Solve for x
x\leq -8
Graph
Share
Copied to clipboard
8\left(x-4\right)+72\leq 3x
Multiply both sides of the equation by 24, the least common multiple of 3,8. Since 24 is positive, the inequality direction remains the same.
8x-32+72\leq 3x
Use the distributive property to multiply 8 by x-4.
8x+40\leq 3x
Add -32 and 72 to get 40.
8x+40-3x\leq 0
Subtract 3x from both sides.
5x+40\leq 0
Combine 8x and -3x to get 5x.
5x\leq -40
Subtract 40 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-40}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
x\leq -8
Divide -40 by 5 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}