Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x-4\right)\left(2x+3\right)}{2x+3}+\frac{9}{2x+3}}{x+3-\frac{5}{2x+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-4 times \frac{2x+3}{2x+3}.
\frac{\frac{\left(x-4\right)\left(2x+3\right)+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Since \frac{\left(x-4\right)\left(2x+3\right)}{2x+3} and \frac{9}{2x+3} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}+3x-8x-12+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Do the multiplications in \left(x-4\right)\left(2x+3\right)+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{x+3-\frac{5}{2x+3}}
Combine like terms in 2x^{2}+3x-8x-12+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)}{2x+3}-\frac{5}{2x+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+3 times \frac{2x+3}{2x+3}.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)-5}{2x+3}}
Since \frac{\left(x+3\right)\left(2x+3\right)}{2x+3} and \frac{5}{2x+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+3x+6x+9-5}{2x+3}}
Do the multiplications in \left(x+3\right)\left(2x+3\right)-5.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+9x+4}{2x+3}}
Combine like terms in 2x^{2}+3x+6x+9-5.
\frac{\left(2x^{2}-5x-3\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x^{2}+9x+4\right)}
Divide \frac{2x^{2}-5x-3}{2x+3} by \frac{2x^{2}+9x+4}{2x+3} by multiplying \frac{2x^{2}-5x-3}{2x+3} by the reciprocal of \frac{2x^{2}+9x+4}{2x+3}.
\frac{2x^{2}-5x-3}{2x^{2}+9x+4}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-3\right)\left(2x+1\right)}{\left(x+4\right)\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+4}
Cancel out 2x+1 in both numerator and denominator.
\frac{\frac{\left(x-4\right)\left(2x+3\right)}{2x+3}+\frac{9}{2x+3}}{x+3-\frac{5}{2x+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-4 times \frac{2x+3}{2x+3}.
\frac{\frac{\left(x-4\right)\left(2x+3\right)+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Since \frac{\left(x-4\right)\left(2x+3\right)}{2x+3} and \frac{9}{2x+3} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}+3x-8x-12+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Do the multiplications in \left(x-4\right)\left(2x+3\right)+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{x+3-\frac{5}{2x+3}}
Combine like terms in 2x^{2}+3x-8x-12+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)}{2x+3}-\frac{5}{2x+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+3 times \frac{2x+3}{2x+3}.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)-5}{2x+3}}
Since \frac{\left(x+3\right)\left(2x+3\right)}{2x+3} and \frac{5}{2x+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+3x+6x+9-5}{2x+3}}
Do the multiplications in \left(x+3\right)\left(2x+3\right)-5.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+9x+4}{2x+3}}
Combine like terms in 2x^{2}+3x+6x+9-5.
\frac{\left(2x^{2}-5x-3\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x^{2}+9x+4\right)}
Divide \frac{2x^{2}-5x-3}{2x+3} by \frac{2x^{2}+9x+4}{2x+3} by multiplying \frac{2x^{2}-5x-3}{2x+3} by the reciprocal of \frac{2x^{2}+9x+4}{2x+3}.
\frac{2x^{2}-5x-3}{2x^{2}+9x+4}
Cancel out 2x+3 in both numerator and denominator.
\frac{\left(x-3\right)\left(2x+1\right)}{\left(x+4\right)\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+4}
Cancel out 2x+1 in both numerator and denominator.