Solve for b
\left\{\begin{matrix}b=-a\text{, }&a\neq 0\\b\neq 0\text{, }&a=\frac{x}{2}\text{ and }x\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x}{2}\text{, }&x\neq 0\text{ and }b\neq 0\\a=-b\text{, }&b\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
b\left(x-3a\right)-a\left(2a-x\right)=ba\left(-1\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ba^{2}, the least common multiple of a^{2},ab,a.
bx-3ba-a\left(2a-x\right)=ba\left(-1\right)
Use the distributive property to multiply b by x-3a.
bx-3ba-\left(2a^{2}-ax\right)=ba\left(-1\right)
Use the distributive property to multiply a by 2a-x.
bx-3ba-2a^{2}+ax=ba\left(-1\right)
To find the opposite of 2a^{2}-ax, find the opposite of each term.
bx-3ba-2a^{2}+ax-ba\left(-1\right)=0
Subtract ba\left(-1\right) from both sides.
bx-2ba-2a^{2}+ax=0
Combine -3ba and -ba\left(-1\right) to get -2ba.
bx-2ba+ax=2a^{2}
Add 2a^{2} to both sides. Anything plus zero gives itself.
bx-2ba=2a^{2}-ax
Subtract ax from both sides.
\left(x-2a\right)b=2a^{2}-ax
Combine all terms containing b.
\frac{\left(x-2a\right)b}{x-2a}=\frac{a\left(2a-x\right)}{x-2a}
Divide both sides by x-2a.
b=\frac{a\left(2a-x\right)}{x-2a}
Dividing by x-2a undoes the multiplication by x-2a.
b=-a
Divide a\left(2a-x\right) by x-2a.
b=-a\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}