Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x-2 is \left(x-4\right)\left(x-2\right). Multiply \frac{x-3}{x-4} times \frac{x-2}{x-2}. Multiply \frac{x-1}{x-2} times \frac{x-4}{x-4}.
\frac{\left(x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Since \frac{\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)} and \frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-3x+6-x^{2}+4x+x-4}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Do the multiplications in \left(x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right).
\frac{2}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Combine like terms in x^{2}-2x-3x+6-x^{2}+4x+x-4.
\frac{2\left(x-2\right)}{\left(x-4\right)\left(x-2\right)^{2}}-\frac{x-4}{\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is \left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{2}{\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x-4}{x-4}.
\frac{2\left(x-2\right)-\left(x-4\right)}{\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{2\left(x-2\right)}{\left(x-4\right)\left(x-2\right)^{2}} and \frac{x-4}{\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x+4}{\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in 2\left(x-2\right)-\left(x-4\right).
\frac{x}{\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in 2x-4-x+4.
\frac{x}{x^{3}-8x^{2}+20x-16}
Expand \left(x-4\right)\left(x-2\right)^{2}.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x-2 is \left(x-4\right)\left(x-2\right). Multiply \frac{x-3}{x-4} times \frac{x-2}{x-2}. Multiply \frac{x-1}{x-2} times \frac{x-4}{x-4}.
\frac{\left(x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Since \frac{\left(x-3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)} and \frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-3x+6-x^{2}+4x+x-4}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Do the multiplications in \left(x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right).
\frac{2}{\left(x-4\right)\left(x-2\right)}-\frac{1}{\left(x-2\right)^{2}}
Combine like terms in x^{2}-2x-3x+6-x^{2}+4x+x-4.
\frac{2\left(x-2\right)}{\left(x-4\right)\left(x-2\right)^{2}}-\frac{x-4}{\left(x-4\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x-2\right) and \left(x-2\right)^{2} is \left(x-4\right)\left(x-2\right)^{2}. Multiply \frac{2}{\left(x-4\right)\left(x-2\right)} times \frac{x-2}{x-2}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x-4}{x-4}.
\frac{2\left(x-2\right)-\left(x-4\right)}{\left(x-4\right)\left(x-2\right)^{2}}
Since \frac{2\left(x-2\right)}{\left(x-4\right)\left(x-2\right)^{2}} and \frac{x-4}{\left(x-4\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-4-x+4}{\left(x-4\right)\left(x-2\right)^{2}}
Do the multiplications in 2\left(x-2\right)-\left(x-4\right).
\frac{x}{\left(x-4\right)\left(x-2\right)^{2}}
Combine like terms in 2x-4-x+4.
\frac{x}{x^{3}-8x^{2}+20x-16}
Expand \left(x-4\right)\left(x-2\right)^{2}.