Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\left(x-3\right)+\left(x-2\right)\left(x-2\right)=-\left(x-4\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-2\right), the least common multiple of x-2,x-4.
\left(x-4\right)\left(x-3\right)+\left(x-2\right)^{2}=-\left(x-4\right)\left(x-2\right)
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
x^{2}-7x+12+\left(x-2\right)^{2}=-\left(x-4\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{2}-7x+12+x^{2}-4x+4=-\left(x-4\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2x^{2}-7x+12-4x+4=-\left(x-4\right)\left(x-2\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-11x+12+4=-\left(x-4\right)\left(x-2\right)
Combine -7x and -4x to get -11x.
2x^{2}-11x+16=-\left(x-4\right)\left(x-2\right)
Add 12 and 4 to get 16.
2x^{2}-11x+16=\left(-x+4\right)\left(x-2\right)
Use the distributive property to multiply -1 by x-4.
2x^{2}-11x+16=-x^{2}+6x-8
Use the distributive property to multiply -x+4 by x-2 and combine like terms.
2x^{2}-11x+16+x^{2}=6x-8
Add x^{2} to both sides.
3x^{2}-11x+16=6x-8
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-11x+16-6x=-8
Subtract 6x from both sides.
3x^{2}-17x+16=-8
Combine -11x and -6x to get -17x.
3x^{2}-17x+16+8=0
Add 8 to both sides.
3x^{2}-17x+24=0
Add 16 and 8 to get 24.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 24}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -17 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 24}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 24}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-288}}{2\times 3}
Multiply -12 times 24.
x=\frac{-\left(-17\right)±\sqrt{1}}{2\times 3}
Add 289 to -288.
x=\frac{-\left(-17\right)±1}{2\times 3}
Take the square root of 1.
x=\frac{17±1}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±1}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{17±1}{6} when ± is plus. Add 17 to 1.
x=3
Divide 18 by 6.
x=\frac{16}{6}
Now solve the equation x=\frac{17±1}{6} when ± is minus. Subtract 1 from 17.
x=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
x=3 x=\frac{8}{3}
The equation is now solved.
\left(x-4\right)\left(x-3\right)+\left(x-2\right)\left(x-2\right)=-\left(x-4\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-2\right), the least common multiple of x-2,x-4.
\left(x-4\right)\left(x-3\right)+\left(x-2\right)^{2}=-\left(x-4\right)\left(x-2\right)
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
x^{2}-7x+12+\left(x-2\right)^{2}=-\left(x-4\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{2}-7x+12+x^{2}-4x+4=-\left(x-4\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
2x^{2}-7x+12-4x+4=-\left(x-4\right)\left(x-2\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-11x+12+4=-\left(x-4\right)\left(x-2\right)
Combine -7x and -4x to get -11x.
2x^{2}-11x+16=-\left(x-4\right)\left(x-2\right)
Add 12 and 4 to get 16.
2x^{2}-11x+16=\left(-x+4\right)\left(x-2\right)
Use the distributive property to multiply -1 by x-4.
2x^{2}-11x+16=-x^{2}+6x-8
Use the distributive property to multiply -x+4 by x-2 and combine like terms.
2x^{2}-11x+16+x^{2}=6x-8
Add x^{2} to both sides.
3x^{2}-11x+16=6x-8
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-11x+16-6x=-8
Subtract 6x from both sides.
3x^{2}-17x+16=-8
Combine -11x and -6x to get -17x.
3x^{2}-17x=-8-16
Subtract 16 from both sides.
3x^{2}-17x=-24
Subtract 16 from -8 to get -24.
\frac{3x^{2}-17x}{3}=-\frac{24}{3}
Divide both sides by 3.
x^{2}-\frac{17}{3}x=-\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{17}{3}x=-8
Divide -24 by 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-8+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-8+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{1}{36}
Add -8 to \frac{289}{36}.
\left(x-\frac{17}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{1}{6} x-\frac{17}{6}=-\frac{1}{6}
Simplify.
x=3 x=\frac{8}{3}
Add \frac{17}{6} to both sides of the equation.