Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-3}{\left(x-8\right)\left(x-5\right)}-\frac{9}{\left(x-5\right)\left(x-2\right)}
Factor x^{2}-13x+40. Factor x^{2}-7x+10.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}-\frac{9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-8\right)\left(x-5\right) and \left(x-5\right)\left(x-2\right) is \left(x-8\right)\left(x-5\right)\left(x-2\right). Multiply \frac{x-3}{\left(x-8\right)\left(x-5\right)} times \frac{x-2}{x-2}. Multiply \frac{9}{\left(x-5\right)\left(x-2\right)} times \frac{x-8}{x-8}.
\frac{\left(x-3\right)\left(x-2\right)-9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Since \frac{\left(x-3\right)\left(x-2\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)} and \frac{9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-3x+6-9x+72}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Do the multiplications in \left(x-3\right)\left(x-2\right)-9\left(x-8\right).
\frac{x^{2}-14x+78}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Combine like terms in x^{2}-2x-3x+6-9x+72.
\frac{x^{2}-14x+78}{x^{3}-15x^{2}+66x-80}
Expand \left(x-8\right)\left(x-5\right)\left(x-2\right).
\frac{x-3}{\left(x-8\right)\left(x-5\right)}-\frac{9}{\left(x-5\right)\left(x-2\right)}
Factor x^{2}-13x+40. Factor x^{2}-7x+10.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}-\frac{9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-8\right)\left(x-5\right) and \left(x-5\right)\left(x-2\right) is \left(x-8\right)\left(x-5\right)\left(x-2\right). Multiply \frac{x-3}{\left(x-8\right)\left(x-5\right)} times \frac{x-2}{x-2}. Multiply \frac{9}{\left(x-5\right)\left(x-2\right)} times \frac{x-8}{x-8}.
\frac{\left(x-3\right)\left(x-2\right)-9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Since \frac{\left(x-3\right)\left(x-2\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)} and \frac{9\left(x-8\right)}{\left(x-8\right)\left(x-5\right)\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-3x+6-9x+72}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Do the multiplications in \left(x-3\right)\left(x-2\right)-9\left(x-8\right).
\frac{x^{2}-14x+78}{\left(x-8\right)\left(x-5\right)\left(x-2\right)}
Combine like terms in x^{2}-2x-3x+6-9x+72.
\frac{x^{2}-14x+78}{x^{3}-15x^{2}+66x-80}
Expand \left(x-8\right)\left(x-5\right)\left(x-2\right).