Solve for x
x=-6
x=-1
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)=\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(x-3\right)^{2}-\left(x+3\right)\left(x+3\right)=\left(x-3\right)\left(x-2\right)
Multiply x-3 and x-3 to get \left(x-3\right)^{2}.
\left(x-3\right)^{2}-\left(x+3\right)^{2}=\left(x-3\right)\left(x-2\right)
Multiply x+3 and x+3 to get \left(x+3\right)^{2}.
x^{2}-6x+9-\left(x+3\right)^{2}=\left(x-3\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-\left(x^{2}+6x+9\right)=\left(x-3\right)\left(x-2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-6x+9-x^{2}-6x-9=\left(x-3\right)\left(x-2\right)
To find the opposite of x^{2}+6x+9, find the opposite of each term.
-6x+9-6x-9=\left(x-3\right)\left(x-2\right)
Combine x^{2} and -x^{2} to get 0.
-12x+9-9=\left(x-3\right)\left(x-2\right)
Combine -6x and -6x to get -12x.
-12x=\left(x-3\right)\left(x-2\right)
Subtract 9 from 9 to get 0.
-12x=x^{2}-5x+6
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-12x-x^{2}=-5x+6
Subtract x^{2} from both sides.
-12x-x^{2}+5x=6
Add 5x to both sides.
-7x-x^{2}=6
Combine -12x and 5x to get -7x.
-7x-x^{2}-6=0
Subtract 6 from both sides.
-x^{2}-7x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -7 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-1\right)}
Add 49 to -24.
x=\frac{-\left(-7\right)±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{7±5}{2\left(-1\right)}
The opposite of -7 is 7.
x=\frac{7±5}{-2}
Multiply 2 times -1.
x=\frac{12}{-2}
Now solve the equation x=\frac{7±5}{-2} when ± is plus. Add 7 to 5.
x=-6
Divide 12 by -2.
x=\frac{2}{-2}
Now solve the equation x=\frac{7±5}{-2} when ± is minus. Subtract 5 from 7.
x=-1
Divide 2 by -2.
x=-6 x=-1
The equation is now solved.
\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)=\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3.
\left(x-3\right)^{2}-\left(x+3\right)\left(x+3\right)=\left(x-3\right)\left(x-2\right)
Multiply x-3 and x-3 to get \left(x-3\right)^{2}.
\left(x-3\right)^{2}-\left(x+3\right)^{2}=\left(x-3\right)\left(x-2\right)
Multiply x+3 and x+3 to get \left(x+3\right)^{2}.
x^{2}-6x+9-\left(x+3\right)^{2}=\left(x-3\right)\left(x-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-\left(x^{2}+6x+9\right)=\left(x-3\right)\left(x-2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}-6x+9-x^{2}-6x-9=\left(x-3\right)\left(x-2\right)
To find the opposite of x^{2}+6x+9, find the opposite of each term.
-6x+9-6x-9=\left(x-3\right)\left(x-2\right)
Combine x^{2} and -x^{2} to get 0.
-12x+9-9=\left(x-3\right)\left(x-2\right)
Combine -6x and -6x to get -12x.
-12x=\left(x-3\right)\left(x-2\right)
Subtract 9 from 9 to get 0.
-12x=x^{2}-5x+6
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-12x-x^{2}=-5x+6
Subtract x^{2} from both sides.
-12x-x^{2}+5x=6
Add 5x to both sides.
-7x-x^{2}=6
Combine -12x and 5x to get -7x.
-x^{2}-7x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-7x}{-1}=\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{7}{-1}\right)x=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+7x=\frac{6}{-1}
Divide -7 by -1.
x^{2}+7x=-6
Divide 6 by -1.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-6+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=-6+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{25}{4}
Add -6 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{5}{2} x+\frac{7}{2}=-\frac{5}{2}
Simplify.
x=-1 x=-6
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}