Solve for x (complex solution)
x=\sqrt{14}-4\approx -0.258342613
x=-\left(\sqrt{14}+4\right)\approx -7.741657387
Solve for x
x=\sqrt{14}-4\approx -0.258342613
x=-\sqrt{14}-4\approx -7.741657387
Graph
Share
Copied to clipboard
\frac{x-3}{-x-2}=\frac{1}{-x}-2
Factor -x.
\frac{x-3}{-x-2}=\frac{1}{-x}-\frac{2\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{-x}{-x}.
\frac{x-3}{-x-2}=\frac{1-2\left(-1\right)x}{-x}
Since \frac{1}{-x} and \frac{2\left(-1\right)x}{-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3}{-x-2}=\frac{1+2x}{-x}
Do the multiplications in 1-2\left(-1\right)x.
\frac{x-3}{-x-2}-\frac{1+2x}{-x}=0
Subtract \frac{1+2x}{-x} from both sides.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)}-\frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-2 and -x is x\left(x+2\right). Multiply \frac{x-3}{-x-2} times \frac{-x}{-x}. Multiply \frac{1+2x}{-x} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)} and \frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x+x+2+2x^{2}+4x}{x\left(x+2\right)}=0
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right).
\frac{x^{2}+8x+2}{x\left(x+2\right)}=0
Combine like terms in -x^{2}+3x+x+2+2x^{2}+4x.
x^{2}+8x+2=0
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right).
x=\frac{-8±\sqrt{8^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2}}{2}
Square 8.
x=\frac{-8±\sqrt{64-8}}{2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{56}}{2}
Add 64 to -8.
x=\frac{-8±2\sqrt{14}}{2}
Take the square root of 56.
x=\frac{2\sqrt{14}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{14}}{2} when ± is plus. Add -8 to 2\sqrt{14}.
x=\sqrt{14}-4
Divide -8+2\sqrt{14} by 2.
x=\frac{-2\sqrt{14}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{14}}{2} when ± is minus. Subtract 2\sqrt{14} from -8.
x=-\sqrt{14}-4
Divide -8-2\sqrt{14} by 2.
x=\sqrt{14}-4 x=-\sqrt{14}-4
The equation is now solved.
\frac{x-3}{-x-2}=\frac{1}{-x}-2
Factor -x.
\frac{x-3}{-x-2}=\frac{1}{-x}-\frac{2\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{-x}{-x}.
\frac{x-3}{-x-2}=\frac{1-2\left(-1\right)x}{-x}
Since \frac{1}{-x} and \frac{2\left(-1\right)x}{-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3}{-x-2}=\frac{1+2x}{-x}
Do the multiplications in 1-2\left(-1\right)x.
\frac{x-3}{-x-2}-\frac{1+2x}{-x}=0
Subtract \frac{1+2x}{-x} from both sides.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)}-\frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-2 and -x is x\left(x+2\right). Multiply \frac{x-3}{-x-2} times \frac{-x}{-x}. Multiply \frac{1+2x}{-x} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)} and \frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x+x+2+2x^{2}+4x}{x\left(x+2\right)}=0
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right).
\frac{x^{2}+8x+2}{x\left(x+2\right)}=0
Combine like terms in -x^{2}+3x+x+2+2x^{2}+4x.
x^{2}+8x+2=0
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right).
x^{2}+8x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x^{2}+8x+4^{2}=-2+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-2+16
Square 4.
x^{2}+8x+16=14
Add -2 to 16.
\left(x+4\right)^{2}=14
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+4=\sqrt{14} x+4=-\sqrt{14}
Simplify.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Subtract 4 from both sides of the equation.
\frac{x-3}{-x-2}=\frac{1}{-x}-2
Factor -x.
\frac{x-3}{-x-2}=\frac{1}{-x}-\frac{2\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{-x}{-x}.
\frac{x-3}{-x-2}=\frac{1-2\left(-1\right)x}{-x}
Since \frac{1}{-x} and \frac{2\left(-1\right)x}{-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3}{-x-2}=\frac{1+2x}{-x}
Do the multiplications in 1-2\left(-1\right)x.
\frac{x-3}{-x-2}-\frac{1+2x}{-x}=0
Subtract \frac{1+2x}{-x} from both sides.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)}-\frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-2 and -x is x\left(x+2\right). Multiply \frac{x-3}{-x-2} times \frac{-x}{-x}. Multiply \frac{1+2x}{-x} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)} and \frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x+x+2+2x^{2}+4x}{x\left(x+2\right)}=0
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right).
\frac{x^{2}+8x+2}{x\left(x+2\right)}=0
Combine like terms in -x^{2}+3x+x+2+2x^{2}+4x.
x^{2}+8x+2=0
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right).
x=\frac{-8±\sqrt{8^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2}}{2}
Square 8.
x=\frac{-8±\sqrt{64-8}}{2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{56}}{2}
Add 64 to -8.
x=\frac{-8±2\sqrt{14}}{2}
Take the square root of 56.
x=\frac{2\sqrt{14}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{14}}{2} when ± is plus. Add -8 to 2\sqrt{14}.
x=\sqrt{14}-4
Divide -8+2\sqrt{14} by 2.
x=\frac{-2\sqrt{14}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{14}}{2} when ± is minus. Subtract 2\sqrt{14} from -8.
x=-\sqrt{14}-4
Divide -8-2\sqrt{14} by 2.
x=\sqrt{14}-4 x=-\sqrt{14}-4
The equation is now solved.
\frac{x-3}{-x-2}=\frac{1}{-x}-2
Factor -x.
\frac{x-3}{-x-2}=\frac{1}{-x}-\frac{2\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{-x}{-x}.
\frac{x-3}{-x-2}=\frac{1-2\left(-1\right)x}{-x}
Since \frac{1}{-x} and \frac{2\left(-1\right)x}{-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3}{-x-2}=\frac{1+2x}{-x}
Do the multiplications in 1-2\left(-1\right)x.
\frac{x-3}{-x-2}-\frac{1+2x}{-x}=0
Subtract \frac{1+2x}{-x} from both sides.
\frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)}-\frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -x-2 and -x is x\left(x+2\right). Multiply \frac{x-3}{-x-2} times \frac{-x}{-x}. Multiply \frac{1+2x}{-x} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
\frac{\left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)}=0
Since \frac{\left(x-3\right)\left(-1\right)x}{x\left(x+2\right)} and \frac{\left(1+2x\right)\left(-1\right)\left(x+2\right)}{x\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}+3x+x+2+2x^{2}+4x}{x\left(x+2\right)}=0
Do the multiplications in \left(x-3\right)\left(-1\right)x-\left(1+2x\right)\left(-1\right)\left(x+2\right).
\frac{x^{2}+8x+2}{x\left(x+2\right)}=0
Combine like terms in -x^{2}+3x+x+2+2x^{2}+4x.
x^{2}+8x+2=0
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right).
x^{2}+8x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x^{2}+8x+4^{2}=-2+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-2+16
Square 4.
x^{2}+8x+16=14
Add -2 to 16.
\left(x+4\right)^{2}=14
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+4=\sqrt{14} x+4=-\sqrt{14}
Simplify.
x=\sqrt{14}-4 x=-\sqrt{14}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}