Solve for x
x = -\frac{12}{7} = -1\frac{5}{7} \approx -1.714285714
Graph
Share
Copied to clipboard
x-24=\left(2x+3\right)x-\left(x-6\right)\times 2x
Variable x cannot be equal to any of the values -\frac{3}{2},6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(2x+3\right), the least common multiple of 2x^{2}-9x-18,x-6,2x+3.
x-24=2x^{2}+3x-\left(x-6\right)\times 2x
Use the distributive property to multiply 2x+3 by x.
x-24=2x^{2}+3x-\left(2x-12\right)x
Use the distributive property to multiply x-6 by 2.
x-24=2x^{2}+3x-\left(2x^{2}-12x\right)
Use the distributive property to multiply 2x-12 by x.
x-24=2x^{2}+3x-2x^{2}+12x
To find the opposite of 2x^{2}-12x, find the opposite of each term.
x-24=3x+12x
Combine 2x^{2} and -2x^{2} to get 0.
x-24=15x
Combine 3x and 12x to get 15x.
x-24-15x=0
Subtract 15x from both sides.
-14x-24=0
Combine x and -15x to get -14x.
-14x=24
Add 24 to both sides. Anything plus zero gives itself.
x=\frac{24}{-14}
Divide both sides by -14.
x=-\frac{12}{7}
Reduce the fraction \frac{24}{-14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}