Evaluate
\frac{x+2}{x+1}
Expand
\frac{x+2}{x+1}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { x - 2 - \frac { 8 } { x } } { x - 3 - \frac { 4 } { x } }
Share
Copied to clipboard
\frac{\frac{\left(x-2\right)x}{x}-\frac{8}{x}}{x-3-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x}{x}.
\frac{\frac{\left(x-2\right)x-8}{x}}{x-3-\frac{4}{x}}
Since \frac{\left(x-2\right)x}{x} and \frac{8}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{x-3-\frac{4}{x}}
Do the multiplications in \left(x-2\right)x-8.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x}{x}-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-3 times \frac{x}{x}.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x-4}{x}}
Since \frac{\left(x-3\right)x}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{x^{2}-3x-4}{x}}
Do the multiplications in \left(x-3\right)x-4.
\frac{\left(x^{2}-2x-8\right)x}{x\left(x^{2}-3x-4\right)}
Divide \frac{x^{2}-2x-8}{x} by \frac{x^{2}-3x-4}{x} by multiplying \frac{x^{2}-2x-8}{x} by the reciprocal of \frac{x^{2}-3x-4}{x}.
\frac{x^{2}-2x-8}{x^{2}-3x-4}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x-4 in both numerator and denominator.
\frac{\frac{\left(x-2\right)x}{x}-\frac{8}{x}}{x-3-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x}{x}.
\frac{\frac{\left(x-2\right)x-8}{x}}{x-3-\frac{4}{x}}
Since \frac{\left(x-2\right)x}{x} and \frac{8}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{x-3-\frac{4}{x}}
Do the multiplications in \left(x-2\right)x-8.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x}{x}-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-3 times \frac{x}{x}.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x-4}{x}}
Since \frac{\left(x-3\right)x}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{x^{2}-3x-4}{x}}
Do the multiplications in \left(x-3\right)x-4.
\frac{\left(x^{2}-2x-8\right)x}{x\left(x^{2}-3x-4\right)}
Divide \frac{x^{2}-2x-8}{x} by \frac{x^{2}-3x-4}{x} by multiplying \frac{x^{2}-2x-8}{x} by the reciprocal of \frac{x^{2}-3x-4}{x}.
\frac{x^{2}-2x-8}{x^{2}-3x-4}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x-4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}