Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x-2\right)x}{x}-\frac{8}{x}}{x-3-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x}{x}.
\frac{\frac{\left(x-2\right)x-8}{x}}{x-3-\frac{4}{x}}
Since \frac{\left(x-2\right)x}{x} and \frac{8}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{x-3-\frac{4}{x}}
Do the multiplications in \left(x-2\right)x-8.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x}{x}-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-3 times \frac{x}{x}.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x-4}{x}}
Since \frac{\left(x-3\right)x}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{x^{2}-3x-4}{x}}
Do the multiplications in \left(x-3\right)x-4.
\frac{\left(x^{2}-2x-8\right)x}{x\left(x^{2}-3x-4\right)}
Divide \frac{x^{2}-2x-8}{x} by \frac{x^{2}-3x-4}{x} by multiplying \frac{x^{2}-2x-8}{x} by the reciprocal of \frac{x^{2}-3x-4}{x}.
\frac{x^{2}-2x-8}{x^{2}-3x-4}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x-4 in both numerator and denominator.
\frac{\frac{\left(x-2\right)x}{x}-\frac{8}{x}}{x-3-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x}{x}.
\frac{\frac{\left(x-2\right)x-8}{x}}{x-3-\frac{4}{x}}
Since \frac{\left(x-2\right)x}{x} and \frac{8}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{x-3-\frac{4}{x}}
Do the multiplications in \left(x-2\right)x-8.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x}{x}-\frac{4}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-3 times \frac{x}{x}.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{\left(x-3\right)x-4}{x}}
Since \frac{\left(x-3\right)x}{x} and \frac{4}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-8}{x}}{\frac{x^{2}-3x-4}{x}}
Do the multiplications in \left(x-3\right)x-4.
\frac{\left(x^{2}-2x-8\right)x}{x\left(x^{2}-3x-4\right)}
Divide \frac{x^{2}-2x-8}{x} by \frac{x^{2}-3x-4}{x} by multiplying \frac{x^{2}-2x-8}{x} by the reciprocal of \frac{x^{2}-3x-4}{x}.
\frac{x^{2}-2x-8}{x^{2}-3x-4}
Cancel out x in both numerator and denominator.
\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x-4 in both numerator and denominator.