Solve for m
m=x-9+\frac{30}{x}-\frac{50}{x^{2}}
x\neq 5\text{ and }x\neq 0
Graph
Share
Copied to clipboard
x\left(x-2\right)=-xm\times \frac{x}{5-x}+\left(x-5\right)\times 2
Multiply both sides of the equation by x\left(x-5\right), the least common multiple of x-5,5-x,x.
x^{2}-2x=-xm\times \frac{x}{5-x}+\left(x-5\right)\times 2
Use the distributive property to multiply x by x-2.
x^{2}-2x=-\frac{xx}{5-x}m+\left(x-5\right)\times 2
Express x\times \frac{x}{5-x} as a single fraction.
x^{2}-2x=-\frac{xx}{5-x}m+2x-10
Use the distributive property to multiply x-5 by 2.
x^{2}-2x=-\frac{x^{2}}{5-x}m+2x-10
Multiply x and x to get x^{2}.
x^{2}-2x=-\frac{x^{2}m}{5-x}+2x-10
Express \frac{x^{2}}{5-x}m as a single fraction.
x^{2}-2x=-\frac{x^{2}m}{5-x}+\frac{\left(2x-10\right)\left(5-x\right)}{5-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-10 times \frac{5-x}{5-x}.
x^{2}-2x=\frac{-x^{2}m+\left(2x-10\right)\left(5-x\right)}{5-x}
Since -\frac{x^{2}m}{5-x} and \frac{\left(2x-10\right)\left(5-x\right)}{5-x} have the same denominator, add them by adding their numerators.
x^{2}-2x=\frac{-x^{2}m+10x-2x^{2}-50+10x}{5-x}
Do the multiplications in -x^{2}m+\left(2x-10\right)\left(5-x\right).
x^{2}-2x=\frac{20x-x^{2}m-2x^{2}-50}{5-x}
Combine like terms in -x^{2}m+10x-2x^{2}-50+10x.
\frac{20x-x^{2}m-2x^{2}-50}{5-x}=x^{2}-2x
Swap sides so that all variable terms are on the left hand side.
20x-x^{2}m-2x^{2}-50=\left(-x+5\right)x^{2}-2x\left(-x+5\right)
Multiply both sides of the equation by -x+5.
20x-x^{2}m-2x^{2}-50=-x^{3}+5x^{2}-2x\left(-x+5\right)
Use the distributive property to multiply -x+5 by x^{2}.
20x-x^{2}m-2x^{2}-50=-x^{3}+5x^{2}+2x^{2}-10x
Use the distributive property to multiply -2x by -x+5.
20x-x^{2}m-2x^{2}-50=-x^{3}+7x^{2}-10x
Combine 5x^{2} and 2x^{2} to get 7x^{2}.
-x^{2}m-2x^{2}-50=-x^{3}+7x^{2}-10x-20x
Subtract 20x from both sides.
-x^{2}m-2x^{2}-50=-x^{3}+7x^{2}-30x
Combine -10x and -20x to get -30x.
-x^{2}m-50=-x^{3}+7x^{2}-30x+2x^{2}
Add 2x^{2} to both sides.
-x^{2}m-50=-x^{3}+9x^{2}-30x
Combine 7x^{2} and 2x^{2} to get 9x^{2}.
-x^{2}m=-x^{3}+9x^{2}-30x+50
Add 50 to both sides.
\left(-x^{2}\right)m=50-30x+9x^{2}-x^{3}
The equation is in standard form.
\frac{\left(-x^{2}\right)m}{-x^{2}}=\frac{\left(x-5\right)\left(-x^{2}+4x-10\right)}{-x^{2}}
Divide both sides by -x^{2}.
m=\frac{\left(x-5\right)\left(-x^{2}+4x-10\right)}{-x^{2}}
Dividing by -x^{2} undoes the multiplication by -x^{2}.
m=x-9+\frac{30x-50}{x^{2}}
Divide \left(-10+4x-x^{2}\right)\left(-5+x\right) by -x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}