Solve for x
x=-3
Graph
Share
Copied to clipboard
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-1,x-2,x^{2}-3x+2.
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-4x+4-x^{2}+2x-1=x^{2}
To find the opposite of x^{2}-2x+1, find the opposite of each term.
-4x+4+2x-1=x^{2}
Combine x^{2} and -x^{2} to get 0.
-2x+4-1=x^{2}
Combine -4x and 2x to get -2x.
-2x+3=x^{2}
Subtract 1 from 4 to get 3.
-2x+3-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-2x+3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-3=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Rewrite -x^{2}-2x+3 as \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Factor out x in the first and 3 in the second group.
\left(-x+1\right)\left(x+3\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-3
To find equation solutions, solve -x+1=0 and x+3=0.
x=-3
Variable x cannot be equal to 1.
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-1,x-2,x^{2}-3x+2.
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-4x+4-x^{2}+2x-1=x^{2}
To find the opposite of x^{2}-2x+1, find the opposite of each term.
-4x+4+2x-1=x^{2}
Combine x^{2} and -x^{2} to get 0.
-2x+4-1=x^{2}
Combine -4x and 2x to get -2x.
-2x+3=x^{2}
Subtract 1 from 4 to get 3.
-2x+3-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-2x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Take the square root of 16.
x=\frac{2±4}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±4}{-2}
Multiply 2 times -1.
x=\frac{6}{-2}
Now solve the equation x=\frac{2±4}{-2} when ± is plus. Add 2 to 4.
x=-3
Divide 6 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{2±4}{-2} when ± is minus. Subtract 4 from 2.
x=1
Divide -2 by -2.
x=-3 x=1
The equation is now solved.
x=-3
Variable x cannot be equal to 1.
\left(x-2\right)\left(x-2\right)-\left(x-1\right)\left(x-1\right)=x^{2}
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-1,x-2,x^{2}-3x+2.
\left(x-2\right)^{2}-\left(x-1\right)\left(x-1\right)=x^{2}
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
\left(x-2\right)^{2}-\left(x-1\right)^{2}=x^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-4x+4-\left(x-1\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-2x+1\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-4x+4-x^{2}+2x-1=x^{2}
To find the opposite of x^{2}-2x+1, find the opposite of each term.
-4x+4+2x-1=x^{2}
Combine x^{2} and -x^{2} to get 0.
-2x+4-1=x^{2}
Combine -4x and 2x to get -2x.
-2x+3=x^{2}
Subtract 1 from 4 to get 3.
-2x+3-x^{2}=0
Subtract x^{2} from both sides.
-2x-x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-2x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{3}{-1}
Divide -2 by -1.
x^{2}+2x=3
Divide -3 by -1.
x^{2}+2x+1^{2}=3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=3+1
Square 1.
x^{2}+2x+1=4
Add 3 to 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+1=2 x+1=-2
Simplify.
x=1 x=-3
Subtract 1 from both sides of the equation.
x=-3
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}