Solve for x
x=1
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-x-6,2x+4,4-x^{2}.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply 2x-4 by x-2 and combine like terms.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply x-3 by x-2 and combine like terms.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
Use the distributive property to multiply x^{2}-5x+6 by 3.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
Use the distributive property to multiply 6-2x by x.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
To find the opposite of 6x-2x^{2}, find the opposite of each term.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
Combine -15x and -6x to get -21x.
2x^{2}-8x+8=5x^{2}-21x+18
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
2x^{2}-8x+8-5x^{2}=-21x+18
Subtract 5x^{2} from both sides.
-3x^{2}-8x+8=-21x+18
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-8x+8+21x=18
Add 21x to both sides.
-3x^{2}+13x+8=18
Combine -8x and 21x to get 13x.
-3x^{2}+13x+8-18=0
Subtract 18 from both sides.
-3x^{2}+13x-10=0
Subtract 18 from 8 to get -10.
a+b=13 ab=-3\left(-10\right)=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=10 b=3
The solution is the pair that gives sum 13.
\left(-3x^{2}+10x\right)+\left(3x-10\right)
Rewrite -3x^{2}+13x-10 as \left(-3x^{2}+10x\right)+\left(3x-10\right).
-x\left(3x-10\right)+3x-10
Factor out -x in -3x^{2}+10x.
\left(3x-10\right)\left(-x+1\right)
Factor out common term 3x-10 by using distributive property.
x=\frac{10}{3} x=1
To find equation solutions, solve 3x-10=0 and -x+1=0.
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-x-6,2x+4,4-x^{2}.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply 2x-4 by x-2 and combine like terms.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply x-3 by x-2 and combine like terms.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
Use the distributive property to multiply x^{2}-5x+6 by 3.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
Use the distributive property to multiply 6-2x by x.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
To find the opposite of 6x-2x^{2}, find the opposite of each term.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
Combine -15x and -6x to get -21x.
2x^{2}-8x+8=5x^{2}-21x+18
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
2x^{2}-8x+8-5x^{2}=-21x+18
Subtract 5x^{2} from both sides.
-3x^{2}-8x+8=-21x+18
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-8x+8+21x=18
Add 21x to both sides.
-3x^{2}+13x+8=18
Combine -8x and 21x to get 13x.
-3x^{2}+13x+8-18=0
Subtract 18 from both sides.
-3x^{2}+13x-10=0
Subtract 18 from 8 to get -10.
x=\frac{-13±\sqrt{13^{2}-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 13 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
Square 13.
x=\frac{-13±\sqrt{169+12\left(-10\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-13±\sqrt{169-120}}{2\left(-3\right)}
Multiply 12 times -10.
x=\frac{-13±\sqrt{49}}{2\left(-3\right)}
Add 169 to -120.
x=\frac{-13±7}{2\left(-3\right)}
Take the square root of 49.
x=\frac{-13±7}{-6}
Multiply 2 times -3.
x=-\frac{6}{-6}
Now solve the equation x=\frac{-13±7}{-6} when ± is plus. Add -13 to 7.
x=1
Divide -6 by -6.
x=-\frac{20}{-6}
Now solve the equation x=\frac{-13±7}{-6} when ± is minus. Subtract 7 from -13.
x=\frac{10}{3}
Reduce the fraction \frac{-20}{-6} to lowest terms by extracting and canceling out 2.
x=1 x=\frac{10}{3}
The equation is now solved.
\left(2x-4\right)\left(x-2\right)=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-x-6,2x+4,4-x^{2}.
2x^{2}-8x+8=\left(x-3\right)\left(x-2\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply 2x-4 by x-2 and combine like terms.
2x^{2}-8x+8=\left(x^{2}-5x+6\right)\times 3-\left(6-2x\right)x
Use the distributive property to multiply x-3 by x-2 and combine like terms.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6-2x\right)x
Use the distributive property to multiply x^{2}-5x+6 by 3.
2x^{2}-8x+8=3x^{2}-15x+18-\left(6x-2x^{2}\right)
Use the distributive property to multiply 6-2x by x.
2x^{2}-8x+8=3x^{2}-15x+18-6x+2x^{2}
To find the opposite of 6x-2x^{2}, find the opposite of each term.
2x^{2}-8x+8=3x^{2}-21x+18+2x^{2}
Combine -15x and -6x to get -21x.
2x^{2}-8x+8=5x^{2}-21x+18
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
2x^{2}-8x+8-5x^{2}=-21x+18
Subtract 5x^{2} from both sides.
-3x^{2}-8x+8=-21x+18
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-8x+8+21x=18
Add 21x to both sides.
-3x^{2}+13x+8=18
Combine -8x and 21x to get 13x.
-3x^{2}+13x=18-8
Subtract 8 from both sides.
-3x^{2}+13x=10
Subtract 8 from 18 to get 10.
\frac{-3x^{2}+13x}{-3}=\frac{10}{-3}
Divide both sides by -3.
x^{2}+\frac{13}{-3}x=\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{13}{3}x=\frac{10}{-3}
Divide 13 by -3.
x^{2}-\frac{13}{3}x=-\frac{10}{3}
Divide 10 by -3.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{13}{6}\right)^{2}
Divide -\frac{13}{3}, the coefficient of the x term, by 2 to get -\frac{13}{6}. Then add the square of -\frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-\frac{10}{3}+\frac{169}{36}
Square -\frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{3}x+\frac{169}{36}=\frac{49}{36}
Add -\frac{10}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{13}{6}=\frac{7}{6} x-\frac{13}{6}=-\frac{7}{6}
Simplify.
x=\frac{10}{3} x=1
Add \frac{13}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}