Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-2}{\left(x-4\right)\left(x+4\right)}+\frac{x-4}{2-x}
Factor x^{2}-16.
\frac{\left(x-2\right)\left(-x+2\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}+\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and 2-x is \left(x-4\right)\left(x+4\right)\left(-x+2\right). Multiply \frac{x-2}{\left(x-4\right)\left(x+4\right)} times \frac{-x+2}{-x+2}. Multiply \frac{x-4}{2-x} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-2\right)\left(-x+2\right)+\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Since \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)} and \frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x+2x-4+x^{3}-16x-4x^{2}+64}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Do the multiplications in \left(x-2\right)\left(-x+2\right)+\left(x-4\right)\left(x-4\right)\left(x+4\right).
\frac{-5x^{2}-12x+60+x^{3}}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Combine like terms in -x^{2}+2x+2x-4+x^{3}-16x-4x^{2}+64.
\frac{-5x^{2}-12x+60+x^{3}}{-x^{3}+2x^{2}+16x-32}
Expand \left(x-4\right)\left(x+4\right)\left(-x+2\right).
\frac{x-2}{\left(x-4\right)\left(x+4\right)}+\frac{x-4}{2-x}
Factor x^{2}-16.
\frac{\left(x-2\right)\left(-x+2\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}+\frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and 2-x is \left(x-4\right)\left(x+4\right)\left(-x+2\right). Multiply \frac{x-2}{\left(x-4\right)\left(x+4\right)} times \frac{-x+2}{-x+2}. Multiply \frac{x-4}{2-x} times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-2\right)\left(-x+2\right)+\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Since \frac{\left(x-2\right)\left(-x+2\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)} and \frac{\left(x-4\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+2x+2x-4+x^{3}-16x-4x^{2}+64}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Do the multiplications in \left(x-2\right)\left(-x+2\right)+\left(x-4\right)\left(x-4\right)\left(x+4\right).
\frac{-5x^{2}-12x+60+x^{3}}{\left(x-4\right)\left(x+4\right)\left(-x+2\right)}
Combine like terms in -x^{2}+2x+2x-4+x^{3}-16x-4x^{2}+64.
\frac{-5x^{2}-12x+60+x^{3}}{-x^{3}+2x^{2}+16x-32}
Expand \left(x-4\right)\left(x+4\right)\left(-x+2\right).