Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-2}{\left(x+1\right)\left(x+4\right)}-\frac{8}{\left(x+4\right)\left(x+8\right)}
Factor x^{2}+5x+4. Factor x^{2}+12x+32.
\frac{\left(x-2\right)\left(x+8\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}-\frac{8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and \left(x+4\right)\left(x+8\right) is \left(x+1\right)\left(x+4\right)\left(x+8\right). Multiply \frac{x-2}{\left(x+1\right)\left(x+4\right)} times \frac{x+8}{x+8}. Multiply \frac{8}{\left(x+4\right)\left(x+8\right)} times \frac{x+1}{x+1}.
\frac{\left(x-2\right)\left(x+8\right)-8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Since \frac{\left(x-2\right)\left(x+8\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)} and \frac{8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+8x-2x-16-8x-8}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Do the multiplications in \left(x-2\right)\left(x+8\right)-8\left(x+1\right).
\frac{x^{2}-2x-24}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Combine like terms in x^{2}+8x-2x-16-8x-8.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x-24}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}.
\frac{x-6}{\left(x+1\right)\left(x+8\right)}
Cancel out x+4 in both numerator and denominator.
\frac{x-6}{x^{2}+9x+8}
Expand \left(x+1\right)\left(x+8\right).
\frac{x-2}{\left(x+1\right)\left(x+4\right)}-\frac{8}{\left(x+4\right)\left(x+8\right)}
Factor x^{2}+5x+4. Factor x^{2}+12x+32.
\frac{\left(x-2\right)\left(x+8\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}-\frac{8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and \left(x+4\right)\left(x+8\right) is \left(x+1\right)\left(x+4\right)\left(x+8\right). Multiply \frac{x-2}{\left(x+1\right)\left(x+4\right)} times \frac{x+8}{x+8}. Multiply \frac{8}{\left(x+4\right)\left(x+8\right)} times \frac{x+1}{x+1}.
\frac{\left(x-2\right)\left(x+8\right)-8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Since \frac{\left(x-2\right)\left(x+8\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)} and \frac{8\left(x+1\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+8x-2x-16-8x-8}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Do the multiplications in \left(x-2\right)\left(x+8\right)-8\left(x+1\right).
\frac{x^{2}-2x-24}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Combine like terms in x^{2}+8x-2x-16-8x-8.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x-24}{\left(x+1\right)\left(x+4\right)\left(x+8\right)}.
\frac{x-6}{\left(x+1\right)\left(x+8\right)}
Cancel out x+4 in both numerator and denominator.
\frac{x-6}{x^{2}+9x+8}
Expand \left(x+1\right)\left(x+8\right).