Solve for x
x=-\frac{8}{25}=-0.32
Graph
Share
Copied to clipboard
\left(3x+2\right)\left(x-2\right)+\left(x+5\right)\times 2=\left(3x+2\right)\left(x+7\right)
Variable x cannot be equal to any of the values -5,-\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(x+5\right)\left(3x+2\right), the least common multiple of x+5,3x+2.
3x^{2}-4x-4+\left(x+5\right)\times 2=\left(3x+2\right)\left(x+7\right)
Use the distributive property to multiply 3x+2 by x-2 and combine like terms.
3x^{2}-4x-4+2x+10=\left(3x+2\right)\left(x+7\right)
Use the distributive property to multiply x+5 by 2.
3x^{2}-2x-4+10=\left(3x+2\right)\left(x+7\right)
Combine -4x and 2x to get -2x.
3x^{2}-2x+6=\left(3x+2\right)\left(x+7\right)
Add -4 and 10 to get 6.
3x^{2}-2x+6=3x^{2}+23x+14
Use the distributive property to multiply 3x+2 by x+7 and combine like terms.
3x^{2}-2x+6-3x^{2}=23x+14
Subtract 3x^{2} from both sides.
-2x+6=23x+14
Combine 3x^{2} and -3x^{2} to get 0.
-2x+6-23x=14
Subtract 23x from both sides.
-25x+6=14
Combine -2x and -23x to get -25x.
-25x=14-6
Subtract 6 from both sides.
-25x=8
Subtract 6 from 14 to get 8.
x=\frac{8}{-25}
Divide both sides by -25.
x=-\frac{8}{25}
Fraction \frac{8}{-25} can be rewritten as -\frac{8}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}