Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and x+2 is \left(x+2\right)\left(x+4\right). Multiply \frac{x-2}{x+4} times \frac{x+2}{x+2}. Multiply \frac{2x}{x+2} times \frac{x+4}{x+4}.
\frac{\left(x-2\right)\left(x+2\right)-2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
Since \frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)} and \frac{2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-2x-4-2x^{2}-8x}{\left(x+2\right)\left(x+4\right)}
Do the multiplications in \left(x-2\right)\left(x+2\right)-2x\left(x+4\right).
\frac{-x^{2}-8x-4}{\left(x+2\right)\left(x+4\right)}
Combine like terms in x^{2}+2x-2x-4-2x^{2}-8x.
\frac{-x^{2}-8x-4}{x^{2}+6x+8}
Expand \left(x+2\right)\left(x+4\right).
\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and x+2 is \left(x+2\right)\left(x+4\right). Multiply \frac{x-2}{x+4} times \frac{x+2}{x+2}. Multiply \frac{2x}{x+2} times \frac{x+4}{x+4}.
\frac{\left(x-2\right)\left(x+2\right)-2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)}
Since \frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)} and \frac{2x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x-2x-4-2x^{2}-8x}{\left(x+2\right)\left(x+4\right)}
Do the multiplications in \left(x-2\right)\left(x+2\right)-2x\left(x+4\right).
\frac{-x^{2}-8x-4}{\left(x+2\right)\left(x+4\right)}
Combine like terms in x^{2}+2x-2x-4-2x^{2}-8x.
\frac{-x^{2}-8x-4}{x^{2}+6x+8}
Expand \left(x+2\right)\left(x+4\right).