Solve for x
x=2\left(y-6\right)
y\neq 5
Solve for y
y=\frac{x+12}{2}
x\neq -2
Graph
Share
Copied to clipboard
\left(y-5\right)\left(x-2\right)=\left(x+2\right)\left(y-7\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(y-5\right)\left(x+2\right), the least common multiple of x+2,y-5.
yx-2y-5x+10=\left(x+2\right)\left(y-7\right)
Use the distributive property to multiply y-5 by x-2.
yx-2y-5x+10=xy-7x+2y-14
Use the distributive property to multiply x+2 by y-7.
yx-2y-5x+10-xy=-7x+2y-14
Subtract xy from both sides.
-2y-5x+10=-7x+2y-14
Combine yx and -xy to get 0.
-2y-5x+10+7x=2y-14
Add 7x to both sides.
-2y+2x+10=2y-14
Combine -5x and 7x to get 2x.
2x+10=2y-14+2y
Add 2y to both sides.
2x+10=4y-14
Combine 2y and 2y to get 4y.
2x=4y-14-10
Subtract 10 from both sides.
2x=4y-24
Subtract 10 from -14 to get -24.
\frac{2x}{2}=\frac{4y-24}{2}
Divide both sides by 2.
x=\frac{4y-24}{2}
Dividing by 2 undoes the multiplication by 2.
x=2y-12
Divide -24+4y by 2.
x=2y-12\text{, }x\neq -2
Variable x cannot be equal to -2.
\left(y-5\right)\left(x-2\right)=\left(x+2\right)\left(y-7\right)
Variable y cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by \left(y-5\right)\left(x+2\right), the least common multiple of x+2,y-5.
yx-2y-5x+10=\left(x+2\right)\left(y-7\right)
Use the distributive property to multiply y-5 by x-2.
yx-2y-5x+10=xy-7x+2y-14
Use the distributive property to multiply x+2 by y-7.
yx-2y-5x+10-xy=-7x+2y-14
Subtract xy from both sides.
-2y-5x+10=-7x+2y-14
Combine yx and -xy to get 0.
-2y-5x+10-2y=-7x-14
Subtract 2y from both sides.
-4y-5x+10=-7x-14
Combine -2y and -2y to get -4y.
-4y+10=-7x-14+5x
Add 5x to both sides.
-4y+10=-2x-14
Combine -7x and 5x to get -2x.
-4y=-2x-14-10
Subtract 10 from both sides.
-4y=-2x-24
Subtract 10 from -14 to get -24.
\frac{-4y}{-4}=\frac{-2x-24}{-4}
Divide both sides by -4.
y=\frac{-2x-24}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{x}{2}+6
Divide -2x-24 by -4.
y=\frac{x}{2}+6\text{, }y\neq 5
Variable y cannot be equal to 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}