Solve for x
x = -\frac{26}{15} = -1\frac{11}{15} \approx -1.733333333
Graph
Share
Copied to clipboard
9\left(x-2\right)=4\left(6x+2\right)
Multiply both sides of the equation by 36, the least common multiple of 4,9.
9x-18=4\left(6x+2\right)
Use the distributive property to multiply 9 by x-2.
9x-18=24x+8
Use the distributive property to multiply 4 by 6x+2.
9x-18-24x=8
Subtract 24x from both sides.
-15x-18=8
Combine 9x and -24x to get -15x.
-15x=8+18
Add 18 to both sides.
-15x=26
Add 8 and 18 to get 26.
x=\frac{26}{-15}
Divide both sides by -15.
x=-\frac{26}{15}
Fraction \frac{26}{-15} can be rewritten as -\frac{26}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}