Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-2\right)=2x-3
Variable x cannot be equal to any of the values 0,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-3\right), the least common multiple of 2x-3,x.
x^{2}-2x=2x-3
Use the distributive property to multiply x by x-2.
x^{2}-2x-2x=-3
Subtract 2x from both sides.
x^{2}-4x=-3
Combine -2x and -2x to get -4x.
x^{2}-4x+3=0
Add 3 to both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Add 16 to -12.
x=\frac{-\left(-4\right)±2}{2}
Take the square root of 4.
x=\frac{4±2}{2}
The opposite of -4 is 4.
x=\frac{6}{2}
Now solve the equation x=\frac{4±2}{2} when ± is plus. Add 4 to 2.
x=3
Divide 6 by 2.
x=\frac{2}{2}
Now solve the equation x=\frac{4±2}{2} when ± is minus. Subtract 2 from 4.
x=1
Divide 2 by 2.
x=3 x=1
The equation is now solved.
x\left(x-2\right)=2x-3
Variable x cannot be equal to any of the values 0,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-3\right), the least common multiple of 2x-3,x.
x^{2}-2x=2x-3
Use the distributive property to multiply x by x-2.
x^{2}-2x-2x=-3
Subtract 2x from both sides.
x^{2}-4x=-3
Combine -2x and -2x to get -4x.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.