Solve for x
x = \frac{\sqrt{713} - 3}{16} \approx 1.48137874
x=\frac{-\sqrt{713}-3}{16}\approx -1.85637874
Graph
Share
Copied to clipboard
15\left(x-2\right)+10x^{2}-12x+6=2\left(x^{2}-1\right)
Multiply both sides of the equation by 30, the least common multiple of 2,3,5,15.
15x-30+10x^{2}-12x+6=2\left(x^{2}-1\right)
Use the distributive property to multiply 15 by x-2.
3x-30+10x^{2}+6=2\left(x^{2}-1\right)
Combine 15x and -12x to get 3x.
3x-24+10x^{2}=2\left(x^{2}-1\right)
Add -30 and 6 to get -24.
3x-24+10x^{2}=2x^{2}-2
Use the distributive property to multiply 2 by x^{2}-1.
3x-24+10x^{2}-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-24+8x^{2}=-2
Combine 10x^{2} and -2x^{2} to get 8x^{2}.
3x-24+8x^{2}+2=0
Add 2 to both sides.
3x-22+8x^{2}=0
Add -24 and 2 to get -22.
8x^{2}+3x-22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-22\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 3 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 8\left(-22\right)}}{2\times 8}
Square 3.
x=\frac{-3±\sqrt{9-32\left(-22\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-3±\sqrt{9+704}}{2\times 8}
Multiply -32 times -22.
x=\frac{-3±\sqrt{713}}{2\times 8}
Add 9 to 704.
x=\frac{-3±\sqrt{713}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{713}-3}{16}
Now solve the equation x=\frac{-3±\sqrt{713}}{16} when ± is plus. Add -3 to \sqrt{713}.
x=\frac{-\sqrt{713}-3}{16}
Now solve the equation x=\frac{-3±\sqrt{713}}{16} when ± is minus. Subtract \sqrt{713} from -3.
x=\frac{\sqrt{713}-3}{16} x=\frac{-\sqrt{713}-3}{16}
The equation is now solved.
15\left(x-2\right)+10x^{2}-12x+6=2\left(x^{2}-1\right)
Multiply both sides of the equation by 30, the least common multiple of 2,3,5,15.
15x-30+10x^{2}-12x+6=2\left(x^{2}-1\right)
Use the distributive property to multiply 15 by x-2.
3x-30+10x^{2}+6=2\left(x^{2}-1\right)
Combine 15x and -12x to get 3x.
3x-24+10x^{2}=2\left(x^{2}-1\right)
Add -30 and 6 to get -24.
3x-24+10x^{2}=2x^{2}-2
Use the distributive property to multiply 2 by x^{2}-1.
3x-24+10x^{2}-2x^{2}=-2
Subtract 2x^{2} from both sides.
3x-24+8x^{2}=-2
Combine 10x^{2} and -2x^{2} to get 8x^{2}.
3x+8x^{2}=-2+24
Add 24 to both sides.
3x+8x^{2}=22
Add -2 and 24 to get 22.
8x^{2}+3x=22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}+3x}{8}=\frac{22}{8}
Divide both sides by 8.
x^{2}+\frac{3}{8}x=\frac{22}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{8}x=\frac{11}{4}
Reduce the fraction \frac{22}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=\frac{11}{4}+\left(\frac{3}{16}\right)^{2}
Divide \frac{3}{8}, the coefficient of the x term, by 2 to get \frac{3}{16}. Then add the square of \frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{11}{4}+\frac{9}{256}
Square \frac{3}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{713}{256}
Add \frac{11}{4} to \frac{9}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{16}\right)^{2}=\frac{713}{256}
Factor x^{2}+\frac{3}{8}x+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{713}{256}}
Take the square root of both sides of the equation.
x+\frac{3}{16}=\frac{\sqrt{713}}{16} x+\frac{3}{16}=-\frac{\sqrt{713}}{16}
Simplify.
x=\frac{\sqrt{713}-3}{16} x=\frac{-\sqrt{713}-3}{16}
Subtract \frac{3}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}