Evaluate
8-2x^{2}
Expand
8-2x^{2}
Graph
Share
Copied to clipboard
\frac{\left(x-2\right)\left(\frac{-5}{x-3}-x-3\right)}{\frac{x-2}{2x-6}}
Divide x-2 by \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3} by multiplying x-2 by the reciprocal of \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3}.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}\right)}{\frac{x-2}{2x-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{x-3}{x-3}.
\frac{\left(x-2\right)\times \frac{-5+\left(-x-3\right)\left(x-3\right)}{x-3}}{\frac{x-2}{2x-6}}
Since \frac{-5}{x-3} and \frac{\left(-x-3\right)\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{\left(x-2\right)\times \frac{-5-x^{2}+3x-3x+9}{x-3}}{\frac{x-2}{2x-6}}
Do the multiplications in -5+\left(-x-3\right)\left(x-3\right).
\frac{\left(x-2\right)\times \frac{4-x^{2}}{x-3}}{\frac{x-2}{2x-6}}
Combine like terms in -5-x^{2}+3x-3x+9.
\frac{\frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3}}{\frac{x-2}{2x-6}}
Express \left(x-2\right)\times \frac{4-x^{2}}{x-3} as a single fraction.
\frac{\left(x-2\right)\left(4-x^{2}\right)\left(2x-6\right)}{\left(x-3\right)\left(x-2\right)}
Divide \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by \frac{x-2}{2x-6} by multiplying \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by the reciprocal of \frac{x-2}{2x-6}.
\frac{\left(2x-6\right)\left(-x^{2}+4\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)\left(-x-2\right)}{x-3}
Factor the expressions that are not already factored.
2\left(x-2\right)\left(-x-2\right)
Cancel out x-3 in both numerator and denominator.
-2x^{2}+8
Expand the expression.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}-x-3\right)}{\frac{x-2}{2x-6}}
Divide x-2 by \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3} by multiplying x-2 by the reciprocal of \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3}.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}\right)}{\frac{x-2}{2x-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{x-3}{x-3}.
\frac{\left(x-2\right)\times \frac{-5+\left(-x-3\right)\left(x-3\right)}{x-3}}{\frac{x-2}{2x-6}}
Since \frac{-5}{x-3} and \frac{\left(-x-3\right)\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{\left(x-2\right)\times \frac{-5-x^{2}+3x-3x+9}{x-3}}{\frac{x-2}{2x-6}}
Do the multiplications in -5+\left(-x-3\right)\left(x-3\right).
\frac{\left(x-2\right)\times \frac{4-x^{2}}{x-3}}{\frac{x-2}{2x-6}}
Combine like terms in -5-x^{2}+3x-3x+9.
\frac{\frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3}}{\frac{x-2}{2x-6}}
Express \left(x-2\right)\times \frac{4-x^{2}}{x-3} as a single fraction.
\frac{\left(x-2\right)\left(4-x^{2}\right)\left(2x-6\right)}{\left(x-3\right)\left(x-2\right)}
Divide \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by \frac{x-2}{2x-6} by multiplying \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by the reciprocal of \frac{x-2}{2x-6}.
\frac{\left(2x-6\right)\left(-x^{2}+4\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)\left(-x-2\right)}{x-3}
Factor the expressions that are not already factored.
2\left(x-2\right)\left(-x-2\right)
Cancel out x-3 in both numerator and denominator.
-2x^{2}+8
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}