Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-2\right)\left(\frac{-5}{x-3}-x-3\right)}{\frac{x-2}{2x-6}}
Divide x-2 by \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3} by multiplying x-2 by the reciprocal of \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3}.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}\right)}{\frac{x-2}{2x-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{x-3}{x-3}.
\frac{\left(x-2\right)\times \frac{-5+\left(-x-3\right)\left(x-3\right)}{x-3}}{\frac{x-2}{2x-6}}
Since \frac{-5}{x-3} and \frac{\left(-x-3\right)\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{\left(x-2\right)\times \frac{-5-x^{2}+3x-3x+9}{x-3}}{\frac{x-2}{2x-6}}
Do the multiplications in -5+\left(-x-3\right)\left(x-3\right).
\frac{\left(x-2\right)\times \frac{4-x^{2}}{x-3}}{\frac{x-2}{2x-6}}
Combine like terms in -5-x^{2}+3x-3x+9.
\frac{\frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3}}{\frac{x-2}{2x-6}}
Express \left(x-2\right)\times \frac{4-x^{2}}{x-3} as a single fraction.
\frac{\left(x-2\right)\left(4-x^{2}\right)\left(2x-6\right)}{\left(x-3\right)\left(x-2\right)}
Divide \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by \frac{x-2}{2x-6} by multiplying \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by the reciprocal of \frac{x-2}{2x-6}.
\frac{\left(2x-6\right)\left(-x^{2}+4\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)\left(-x-2\right)}{x-3}
Factor the expressions that are not already factored.
2\left(x-2\right)\left(-x-2\right)
Cancel out x-3 in both numerator and denominator.
-2x^{2}+8
Expand the expression.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}-x-3\right)}{\frac{x-2}{2x-6}}
Divide x-2 by \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3} by multiplying x-2 by the reciprocal of \frac{\frac{x-2}{2x-6}}{\frac{-5}{x-3}-x-3}.
\frac{\left(x-2\right)\left(\frac{-5}{x-3}+\frac{\left(-x-3\right)\left(x-3\right)}{x-3}\right)}{\frac{x-2}{2x-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x-3 times \frac{x-3}{x-3}.
\frac{\left(x-2\right)\times \frac{-5+\left(-x-3\right)\left(x-3\right)}{x-3}}{\frac{x-2}{2x-6}}
Since \frac{-5}{x-3} and \frac{\left(-x-3\right)\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{\left(x-2\right)\times \frac{-5-x^{2}+3x-3x+9}{x-3}}{\frac{x-2}{2x-6}}
Do the multiplications in -5+\left(-x-3\right)\left(x-3\right).
\frac{\left(x-2\right)\times \frac{4-x^{2}}{x-3}}{\frac{x-2}{2x-6}}
Combine like terms in -5-x^{2}+3x-3x+9.
\frac{\frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3}}{\frac{x-2}{2x-6}}
Express \left(x-2\right)\times \frac{4-x^{2}}{x-3} as a single fraction.
\frac{\left(x-2\right)\left(4-x^{2}\right)\left(2x-6\right)}{\left(x-3\right)\left(x-2\right)}
Divide \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by \frac{x-2}{2x-6} by multiplying \frac{\left(x-2\right)\left(4-x^{2}\right)}{x-3} by the reciprocal of \frac{x-2}{2x-6}.
\frac{\left(2x-6\right)\left(-x^{2}+4\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{2\left(x-3\right)\left(x-2\right)\left(-x-2\right)}{x-3}
Factor the expressions that are not already factored.
2\left(x-2\right)\left(-x-2\right)
Cancel out x-3 in both numerator and denominator.
-2x^{2}+8
Expand the expression.