Solve for x
x=\frac{10-y}{7}
Solve for y
y=10-7x
Graph
Share
Copied to clipboard
\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Subtract 2 from \frac{4}{3} to get -\frac{2}{3}.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Multiply both numerator and denominator by -1.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Add \frac{2}{3} and 4 to get \frac{14}{3}.
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Divide each term of -x+2 by \frac{2}{3} to get \frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}.
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Divide -x by \frac{2}{3} to get -\frac{3}{2}x.
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
Divide 2 by \frac{2}{3} by multiplying 2 by the reciprocal of \frac{2}{3}.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
Multiply 2 and \frac{3}{2} to get 3.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
Divide each term of y+4 by \frac{14}{3} to get \frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
Divide 4 by \frac{14}{3} by multiplying 4 by the reciprocal of \frac{14}{3}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
Multiply 4 and \frac{3}{14} to get \frac{6}{7}.
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}+\frac{6}{7}-3
Subtract 3 from both sides.
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}-\frac{15}{7}
Subtract 3 from \frac{6}{7} to get -\frac{15}{7}.
-\frac{3}{2}x=\frac{3y}{14}-\frac{15}{7}
The equation is in standard form.
\frac{-\frac{3}{2}x}{-\frac{3}{2}}=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
Dividing by -\frac{3}{2} undoes the multiplication by -\frac{3}{2}.
x=\frac{10-y}{7}
Divide -\frac{15}{7}+\frac{3y}{14} by -\frac{3}{2} by multiplying -\frac{15}{7}+\frac{3y}{14} by the reciprocal of -\frac{3}{2}.
\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Subtract 2 from \frac{4}{3} to get -\frac{2}{3}.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Multiply both numerator and denominator by -1.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Add \frac{2}{3} and 4 to get \frac{14}{3}.
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Divide each term of -x+2 by \frac{2}{3} to get \frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}.
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
Divide -x by \frac{2}{3} to get -\frac{3}{2}x.
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
Divide 2 by \frac{2}{3} by multiplying 2 by the reciprocal of \frac{2}{3}.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
Multiply 2 and \frac{3}{2} to get 3.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
Divide each term of y+4 by \frac{14}{3} to get \frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
Divide 4 by \frac{14}{3} by multiplying 4 by the reciprocal of \frac{14}{3}.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
Multiply 4 and \frac{3}{14} to get \frac{6}{7}.
\frac{y}{\frac{14}{3}}+\frac{6}{7}=-\frac{3}{2}x+3
Swap sides so that all variable terms are on the left hand side.
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+3-\frac{6}{7}
Subtract \frac{6}{7} from both sides.
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+\frac{15}{7}
Subtract \frac{6}{7} from 3 to get \frac{15}{7}.
\frac{3}{14}y=-\frac{3x}{2}+\frac{15}{7}
The equation is in standard form.
\frac{\frac{3}{14}y}{\frac{3}{14}}=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
Divide both sides of the equation by \frac{3}{14}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
Dividing by \frac{3}{14} undoes the multiplication by \frac{3}{14}.
y=10-7x
Divide -\frac{3x}{2}+\frac{15}{7} by \frac{3}{14} by multiplying -\frac{3x}{2}+\frac{15}{7} by the reciprocal of \frac{3}{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}