Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\times \frac{x-16x^{-1}}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Use the distributive property to multiply \frac{x-16x^{-1}}{5} by 2-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Express 2\times \frac{x-16x^{-1}}{5} as a single fraction.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Multiply \frac{x-16x^{-1}}{5} times -\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor 5\left(x^{-1}+4x^{-2}\right).
\frac{2x-32x^{-1}}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Use the distributive property to multiply 2 by x-16x^{-1}.
\frac{2x-32x^{-1}}{5}+\frac{-2\times \left(\frac{1}{x}\right)^{2}\left(x-4\right)\left(x-1\right)\left(x+4\right)\left(-x^{2}-x-1\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}.
\frac{2x-32x^{-1}}{5}+\frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Cancel out \left(\frac{1}{x}\right)^{2}\left(x+4\right) in both numerator and denominator.
\frac{2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Since \frac{2x-32x^{-1}}{5} and \frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5} have the same denominator, add them by adding their numerators.
\frac{2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8}{5}
Do the multiplications in 2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right).
\frac{-32\times \frac{1}{x}+2x^{4}-8x^{3}+8}{5}
Combine like terms in 2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8.
2\times \frac{x-16x^{-1}}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Use the distributive property to multiply \frac{x-16x^{-1}}{5} by 2-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Express 2\times \frac{x-16x^{-1}}{5} as a single fraction.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Multiply \frac{x-16x^{-1}}{5} times -\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor 5\left(x^{-1}+4x^{-2}\right).
\frac{2x-32x^{-1}}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Use the distributive property to multiply 2 by x-16x^{-1}.
\frac{2x-32x^{-1}}{5}+\frac{-2\times \left(\frac{1}{x}\right)^{2}\left(x-4\right)\left(x-1\right)\left(x+4\right)\left(-x^{2}-x-1\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}.
\frac{2x-32x^{-1}}{5}+\frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Cancel out \left(\frac{1}{x}\right)^{2}\left(x+4\right) in both numerator and denominator.
\frac{2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Since \frac{2x-32x^{-1}}{5} and \frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5} have the same denominator, add them by adding their numerators.
\frac{2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8}{5}
Do the multiplications in 2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right).
\frac{-32\times \frac{1}{x}+2x^{4}-8x^{3}+8}{5}
Combine like terms in 2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8.