Evaluate
\frac{2\left(x-4\right)\left(x^{4}+4\right)}{5x}
Expand
\frac{2x^{4}}{5}-\frac{8x^{3}}{5}+\frac{8}{5}-\frac{32}{5x}
Graph
Share
Copied to clipboard
2\times \frac{x-16x^{-1}}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Use the distributive property to multiply \frac{x-16x^{-1}}{5} by 2-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Express 2\times \frac{x-16x^{-1}}{5} as a single fraction.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Multiply \frac{x-16x^{-1}}{5} times -\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor 5\left(x^{-1}+4x^{-2}\right).
\frac{2x-32x^{-1}}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Use the distributive property to multiply 2 by x-16x^{-1}.
\frac{2x-32x^{-1}}{5}+\frac{-2\times \left(\frac{1}{x}\right)^{2}\left(x-4\right)\left(x-1\right)\left(x+4\right)\left(-x^{2}-x-1\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}.
\frac{2x-32x^{-1}}{5}+\frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Cancel out \left(\frac{1}{x}\right)^{2}\left(x+4\right) in both numerator and denominator.
\frac{2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Since \frac{2x-32x^{-1}}{5} and \frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5} have the same denominator, add them by adding their numerators.
\frac{2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8}{5}
Do the multiplications in 2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right).
\frac{-32\times \frac{1}{x}+2x^{4}-8x^{3}+8}{5}
Combine like terms in 2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8.
2\times \frac{x-16x^{-1}}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Use the distributive property to multiply \frac{x-16x^{-1}}{5} by 2-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{x-16x^{-1}}{5}\left(-\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}}\right)
Express 2\times \frac{x-16x^{-1}}{5} as a single fraction.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Multiply \frac{x-16x^{-1}}{5} times -\frac{2x^{-1}-2x^{2}}{x^{-1}+4x^{-2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-16x^{-1}\right)}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor 5\left(x^{-1}+4x^{-2}\right).
\frac{2x-32x^{-1}}{5}+\frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}
Use the distributive property to multiply 2 by x-16x^{-1}.
\frac{2x-32x^{-1}}{5}+\frac{-2\times \left(\frac{1}{x}\right)^{2}\left(x-4\right)\left(x-1\right)\left(x+4\right)\left(-x^{2}-x-1\right)}{5\times \left(\frac{1}{x}\right)^{2}\left(x+4\right)}
Factor the expressions that are not already factored in \frac{-\left(x-16x^{-1}\right)\left(2x^{-1}-2x^{2}\right)}{5\left(x^{-1}+4x^{-2}\right)}.
\frac{2x-32x^{-1}}{5}+\frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Cancel out \left(\frac{1}{x}\right)^{2}\left(x+4\right) in both numerator and denominator.
\frac{2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5}
Since \frac{2x-32x^{-1}}{5} and \frac{-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right)}{5} have the same denominator, add them by adding their numerators.
\frac{2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8}{5}
Do the multiplications in 2x-32x^{-1}-2\left(x-4\right)\left(x-1\right)\left(-x^{2}-x-1\right).
\frac{-32\times \frac{1}{x}+2x^{4}-8x^{3}+8}{5}
Combine like terms in 2x-32\times \frac{1}{x}+2x^{4}-2x-8x^{3}+8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}