Evaluate
\frac{x^{3}-25x^{2}-100x+1500}{x^{2}\left(x^{2}-100\right)}
Expand
\frac{x^{3}-25x^{2}-100x+1500}{x^{2}\left(x^{2}-100\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { x - 15 } { x ^ { 2 } } - \frac { 10 } { x ^ { 2 } - 100 }
Share
Copied to clipboard
\frac{x-15}{x^{2}}-\frac{10}{\left(x-10\right)\left(x+10\right)}
Factor x^{2}-100.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}}-\frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-10\right)\left(x+10\right) is \left(x-10\right)\left(x+10\right)x^{2}. Multiply \frac{x-15}{x^{2}} times \frac{\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}. Multiply \frac{10}{\left(x-10\right)\left(x+10\right)} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Since \frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}} and \frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-100x-15x^{2}+1500-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Do the multiplications in \left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{\left(x-10\right)\left(x+10\right)x^{2}}
Combine like terms in x^{3}-100x-15x^{2}+1500-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{x^{4}-100x^{2}}
Expand \left(x-10\right)\left(x+10\right)x^{2}.
\frac{x-15}{x^{2}}-\frac{10}{\left(x-10\right)\left(x+10\right)}
Factor x^{2}-100.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}}-\frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-10\right)\left(x+10\right) is \left(x-10\right)\left(x+10\right)x^{2}. Multiply \frac{x-15}{x^{2}} times \frac{\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}. Multiply \frac{10}{\left(x-10\right)\left(x+10\right)} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Since \frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}} and \frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-100x-15x^{2}+1500-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Do the multiplications in \left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{\left(x-10\right)\left(x+10\right)x^{2}}
Combine like terms in x^{3}-100x-15x^{2}+1500-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{x^{4}-100x^{2}}
Expand \left(x-10\right)\left(x+10\right)x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}