Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-15}{x^{2}}-\frac{10}{\left(x-10\right)\left(x+10\right)}
Factor x^{2}-100.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}}-\frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-10\right)\left(x+10\right) is \left(x-10\right)\left(x+10\right)x^{2}. Multiply \frac{x-15}{x^{2}} times \frac{\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}. Multiply \frac{10}{\left(x-10\right)\left(x+10\right)} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Since \frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}} and \frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-100x-15x^{2}+1500-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Do the multiplications in \left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{\left(x-10\right)\left(x+10\right)x^{2}}
Combine like terms in x^{3}-100x-15x^{2}+1500-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{x^{4}-100x^{2}}
Expand \left(x-10\right)\left(x+10\right)x^{2}.
\frac{x-15}{x^{2}}-\frac{10}{\left(x-10\right)\left(x+10\right)}
Factor x^{2}-100.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}}-\frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-10\right)\left(x+10\right) is \left(x-10\right)\left(x+10\right)x^{2}. Multiply \frac{x-15}{x^{2}} times \frac{\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}. Multiply \frac{10}{\left(x-10\right)\left(x+10\right)} times \frac{x^{2}}{x^{2}}.
\frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Since \frac{\left(x-15\right)\left(x-10\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)x^{2}} and \frac{10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-100x-15x^{2}+1500-10x^{2}}{\left(x-10\right)\left(x+10\right)x^{2}}
Do the multiplications in \left(x-15\right)\left(x-10\right)\left(x+10\right)-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{\left(x-10\right)\left(x+10\right)x^{2}}
Combine like terms in x^{3}-100x-15x^{2}+1500-10x^{2}.
\frac{x^{3}-100x-25x^{2}+1500}{x^{4}-100x^{2}}
Expand \left(x-10\right)\left(x+10\right)x^{2}.