Evaluate
\frac{3}{x+3}
Expand
\frac{3}{x+3}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { x - 15 } { ( x - 3 ) ( x + 3 ) } - \frac { 2 } { 3 - x }
Share
Copied to clipboard
\frac{x-15}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and 3-x is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{3-x} times \frac{-\left(x+3\right)}{-\left(x+3\right)}.
\frac{x-15-2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{x-15}{\left(x-3\right)\left(x+3\right)} and \frac{2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-15+2x+6}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in x-15-2\left(-1\right)\left(x+3\right).
\frac{3x-9}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x-15+2x+6.
\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x-9}{\left(x-3\right)\left(x+3\right)}.
\frac{3}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{x-15}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and 3-x is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{3-x} times \frac{-\left(x+3\right)}{-\left(x+3\right)}.
\frac{x-15-2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{x-15}{\left(x-3\right)\left(x+3\right)} and \frac{2\left(-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-15+2x+6}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in x-15-2\left(-1\right)\left(x+3\right).
\frac{3x-9}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x-15+2x+6.
\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{3x-9}{\left(x-3\right)\left(x+3\right)}.
\frac{3}{x+3}
Cancel out x-3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}