Solve for x
x<-\frac{92}{13}
Graph
Share
Copied to clipboard
4\left(x-11\right)-5\times 6x>140
Multiply both sides of the equation by 20, the least common multiple of 5,4. Since 20 is positive, the inequality direction remains the same.
4x-44-5\times 6x>140
Use the distributive property to multiply 4 by x-11.
4x-44-30x>140
Multiply -5 and 6 to get -30.
-26x-44>140
Combine 4x and -30x to get -26x.
-26x>140+44
Add 44 to both sides.
-26x>184
Add 140 and 44 to get 184.
x<\frac{184}{-26}
Divide both sides by -26. Since -26 is negative, the inequality direction is changed.
x<-\frac{92}{13}
Reduce the fraction \frac{184}{-26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}