Solve for x (complex solution)
x=5+5\sqrt{30399}i\approx 5+871.765450107i
x=-5\sqrt{30399}i+5\approx 5-871.765450107i
Graph
Share
Copied to clipboard
\left(x-10\right)\times \frac{-5}{100}\left(x-\frac{10}{100}x\right)=34200
Multiply both sides of the equation by 100.
\left(x-10\right)\left(-\frac{1}{20}\right)\left(x-\frac{10}{100}x\right)=34200
Reduce the fraction \frac{-5}{100} to lowest terms by extracting and canceling out 5.
\left(x-10\right)\left(-\frac{1}{20}\right)\left(x-\frac{1}{10}x\right)=34200
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\left(x-10\right)\left(-\frac{1}{20}\right)\times \frac{9}{10}x=34200
Combine x and -\frac{1}{10}x to get \frac{9}{10}x.
\left(x-10\right)\times \frac{-9}{20\times 10}x=34200
Multiply -\frac{1}{20} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\left(x-10\right)\times \frac{-9}{200}x=34200
Do the multiplications in the fraction \frac{-9}{20\times 10}.
\left(x-10\right)\left(-\frac{9}{200}\right)x=34200
Fraction \frac{-9}{200} can be rewritten as -\frac{9}{200} by extracting the negative sign.
\left(x\left(-\frac{9}{200}\right)-10\left(-\frac{9}{200}\right)\right)x=34200
Use the distributive property to multiply x-10 by -\frac{9}{200}.
\left(x\left(-\frac{9}{200}\right)+\frac{-10\left(-9\right)}{200}\right)x=34200
Express -10\left(-\frac{9}{200}\right) as a single fraction.
\left(x\left(-\frac{9}{200}\right)+\frac{90}{200}\right)x=34200
Multiply -10 and -9 to get 90.
\left(x\left(-\frac{9}{200}\right)+\frac{9}{20}\right)x=34200
Reduce the fraction \frac{90}{200} to lowest terms by extracting and canceling out 10.
x\left(-\frac{9}{200}\right)x+\frac{9}{20}x=34200
Use the distributive property to multiply x\left(-\frac{9}{200}\right)+\frac{9}{20} by x.
x^{2}\left(-\frac{9}{200}\right)+\frac{9}{20}x=34200
Multiply x and x to get x^{2}.
x^{2}\left(-\frac{9}{200}\right)+\frac{9}{20}x-34200=0
Subtract 34200 from both sides.
-\frac{9}{200}x^{2}+\frac{9}{20}x-34200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{9}{20}±\sqrt{\left(\frac{9}{20}\right)^{2}-4\left(-\frac{9}{200}\right)\left(-34200\right)}}{2\left(-\frac{9}{200}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{9}{200} for a, \frac{9}{20} for b, and -34200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{20}±\sqrt{\frac{81}{400}-4\left(-\frac{9}{200}\right)\left(-34200\right)}}{2\left(-\frac{9}{200}\right)}
Square \frac{9}{20} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{20}±\sqrt{\frac{81}{400}+\frac{9}{50}\left(-34200\right)}}{2\left(-\frac{9}{200}\right)}
Multiply -4 times -\frac{9}{200}.
x=\frac{-\frac{9}{20}±\sqrt{\frac{81}{400}-6156}}{2\left(-\frac{9}{200}\right)}
Multiply \frac{9}{50} times -34200.
x=\frac{-\frac{9}{20}±\sqrt{-\frac{2462319}{400}}}{2\left(-\frac{9}{200}\right)}
Add \frac{81}{400} to -6156.
x=\frac{-\frac{9}{20}±\frac{9\sqrt{30399}i}{20}}{2\left(-\frac{9}{200}\right)}
Take the square root of -\frac{2462319}{400}.
x=\frac{-\frac{9}{20}±\frac{9\sqrt{30399}i}{20}}{-\frac{9}{100}}
Multiply 2 times -\frac{9}{200}.
x=\frac{-9+9\sqrt{30399}i}{-\frac{9}{100}\times 20}
Now solve the equation x=\frac{-\frac{9}{20}±\frac{9\sqrt{30399}i}{20}}{-\frac{9}{100}} when ± is plus. Add -\frac{9}{20} to \frac{9i\sqrt{30399}}{20}.
x=-5\sqrt{30399}i+5
Divide \frac{-9+9i\sqrt{30399}}{20} by -\frac{9}{100} by multiplying \frac{-9+9i\sqrt{30399}}{20} by the reciprocal of -\frac{9}{100}.
x=\frac{-9\sqrt{30399}i-9}{-\frac{9}{100}\times 20}
Now solve the equation x=\frac{-\frac{9}{20}±\frac{9\sqrt{30399}i}{20}}{-\frac{9}{100}} when ± is minus. Subtract \frac{9i\sqrt{30399}}{20} from -\frac{9}{20}.
x=5+5\sqrt{30399}i
Divide \frac{-9-9i\sqrt{30399}}{20} by -\frac{9}{100} by multiplying \frac{-9-9i\sqrt{30399}}{20} by the reciprocal of -\frac{9}{100}.
x=-5\sqrt{30399}i+5 x=5+5\sqrt{30399}i
The equation is now solved.
\left(x-10\right)\times \frac{-5}{100}\left(x-\frac{10}{100}x\right)=34200
Multiply both sides of the equation by 100.
\left(x-10\right)\left(-\frac{1}{20}\right)\left(x-\frac{10}{100}x\right)=34200
Reduce the fraction \frac{-5}{100} to lowest terms by extracting and canceling out 5.
\left(x-10\right)\left(-\frac{1}{20}\right)\left(x-\frac{1}{10}x\right)=34200
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\left(x-10\right)\left(-\frac{1}{20}\right)\times \frac{9}{10}x=34200
Combine x and -\frac{1}{10}x to get \frac{9}{10}x.
\left(x-10\right)\times \frac{-9}{20\times 10}x=34200
Multiply -\frac{1}{20} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\left(x-10\right)\times \frac{-9}{200}x=34200
Do the multiplications in the fraction \frac{-9}{20\times 10}.
\left(x-10\right)\left(-\frac{9}{200}\right)x=34200
Fraction \frac{-9}{200} can be rewritten as -\frac{9}{200} by extracting the negative sign.
\left(x\left(-\frac{9}{200}\right)-10\left(-\frac{9}{200}\right)\right)x=34200
Use the distributive property to multiply x-10 by -\frac{9}{200}.
\left(x\left(-\frac{9}{200}\right)+\frac{-10\left(-9\right)}{200}\right)x=34200
Express -10\left(-\frac{9}{200}\right) as a single fraction.
\left(x\left(-\frac{9}{200}\right)+\frac{90}{200}\right)x=34200
Multiply -10 and -9 to get 90.
\left(x\left(-\frac{9}{200}\right)+\frac{9}{20}\right)x=34200
Reduce the fraction \frac{90}{200} to lowest terms by extracting and canceling out 10.
x\left(-\frac{9}{200}\right)x+\frac{9}{20}x=34200
Use the distributive property to multiply x\left(-\frac{9}{200}\right)+\frac{9}{20} by x.
x^{2}\left(-\frac{9}{200}\right)+\frac{9}{20}x=34200
Multiply x and x to get x^{2}.
-\frac{9}{200}x^{2}+\frac{9}{20}x=34200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{9}{200}x^{2}+\frac{9}{20}x}{-\frac{9}{200}}=\frac{34200}{-\frac{9}{200}}
Divide both sides of the equation by -\frac{9}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{9}{20}}{-\frac{9}{200}}x=\frac{34200}{-\frac{9}{200}}
Dividing by -\frac{9}{200} undoes the multiplication by -\frac{9}{200}.
x^{2}-10x=\frac{34200}{-\frac{9}{200}}
Divide \frac{9}{20} by -\frac{9}{200} by multiplying \frac{9}{20} by the reciprocal of -\frac{9}{200}.
x^{2}-10x=-760000
Divide 34200 by -\frac{9}{200} by multiplying 34200 by the reciprocal of -\frac{9}{200}.
x^{2}-10x+\left(-5\right)^{2}=-760000+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-760000+25
Square -5.
x^{2}-10x+25=-759975
Add -760000 to 25.
\left(x-5\right)^{2}=-759975
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-759975}
Take the square root of both sides of the equation.
x-5=5\sqrt{30399}i x-5=-5\sqrt{30399}i
Simplify.
x=5+5\sqrt{30399}i x=-5\sqrt{30399}i+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}