Solve for x (complex solution)
x=-1+\sqrt{2}i\approx -1+1.414213562i
x=-\sqrt{2}i-1\approx -1-1.414213562i
Graph
Share
Copied to clipboard
x\left(x+3\right)\left(x-1\right)-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}+3x.
\left(x^{2}+3x\right)\left(x-1\right)-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x by x+3.
x^{3}+2x^{2}-3x-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x^{2}+3x by x-1 and combine like terms.
x^{3}+2x^{2}-3x-\left(2x-6\right)=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 2.
x^{3}+2x^{2}-3x-2x+6=x\left(x-3\right)\left(x+3\right)
To find the opposite of 2x-6, find the opposite of each term.
x^{3}+2x^{2}-5x+6=x\left(x-3\right)\left(x+3\right)
Combine -3x and -2x to get -5x.
x^{3}+2x^{2}-5x+6=\left(x^{2}-3x\right)\left(x+3\right)
Use the distributive property to multiply x by x-3.
x^{3}+2x^{2}-5x+6=x^{3}-9x
Use the distributive property to multiply x^{2}-3x by x+3 and combine like terms.
x^{3}+2x^{2}-5x+6-x^{3}=-9x
Subtract x^{3} from both sides.
2x^{2}-5x+6=-9x
Combine x^{3} and -x^{3} to get 0.
2x^{2}-5x+6+9x=0
Add 9x to both sides.
2x^{2}+4x+6=0
Combine -5x and 9x to get 4x.
x=\frac{-4±\sqrt{4^{2}-4\times 2\times 6}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\times 6}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\times 6}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16-48}}{2\times 2}
Multiply -8 times 6.
x=\frac{-4±\sqrt{-32}}{2\times 2}
Add 16 to -48.
x=\frac{-4±4\sqrt{2}i}{2\times 2}
Take the square root of -32.
x=\frac{-4±4\sqrt{2}i}{4}
Multiply 2 times 2.
x=\frac{-4+2^{\frac{5}{2}}i}{4}
Now solve the equation x=\frac{-4±4\sqrt{2}i}{4} when ± is plus. Add -4 to 4i\sqrt{2}.
x=-1+\sqrt{2}i
Divide -4+i\times 2^{\frac{5}{2}} by 4.
x=\frac{-2^{\frac{5}{2}}i-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{2}i}{4} when ± is minus. Subtract 4i\sqrt{2} from -4.
x=-\sqrt{2}i-1
Divide -4-i\times 2^{\frac{5}{2}} by 4.
x=-1+\sqrt{2}i x=-\sqrt{2}i-1
The equation is now solved.
x\left(x+3\right)\left(x-1\right)-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right)\left(x+3\right), the least common multiple of x-3,x^{2}+3x.
\left(x^{2}+3x\right)\left(x-1\right)-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x by x+3.
x^{3}+2x^{2}-3x-\left(x-3\right)\times 2=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x^{2}+3x by x-1 and combine like terms.
x^{3}+2x^{2}-3x-\left(2x-6\right)=x\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 2.
x^{3}+2x^{2}-3x-2x+6=x\left(x-3\right)\left(x+3\right)
To find the opposite of 2x-6, find the opposite of each term.
x^{3}+2x^{2}-5x+6=x\left(x-3\right)\left(x+3\right)
Combine -3x and -2x to get -5x.
x^{3}+2x^{2}-5x+6=\left(x^{2}-3x\right)\left(x+3\right)
Use the distributive property to multiply x by x-3.
x^{3}+2x^{2}-5x+6=x^{3}-9x
Use the distributive property to multiply x^{2}-3x by x+3 and combine like terms.
x^{3}+2x^{2}-5x+6-x^{3}=-9x
Subtract x^{3} from both sides.
2x^{2}-5x+6=-9x
Combine x^{3} and -x^{3} to get 0.
2x^{2}-5x+6+9x=0
Add 9x to both sides.
2x^{2}+4x+6=0
Combine -5x and 9x to get 4x.
2x^{2}+4x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+4x}{2}=-\frac{6}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=-\frac{6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=-\frac{6}{2}
Divide 4 by 2.
x^{2}+2x=-3
Divide -6 by 2.
x^{2}+2x+1^{2}=-3+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-3+1
Square 1.
x^{2}+2x+1=-2
Add -3 to 1.
\left(x+1\right)^{2}=-2
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-2}
Take the square root of both sides of the equation.
x+1=\sqrt{2}i x+1=-\sqrt{2}i
Simplify.
x=-1+\sqrt{2}i x=-\sqrt{2}i-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}