Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{x-3}-\frac{1x+9}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x+9}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{x-1}{x-3} times \frac{x+3}{x+3}.
\frac{\left(x-1\right)\left(x+3\right)-\left(x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+3x-x-3-x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x+3\right)-\left(x+9\right).
\frac{x^{2}+x-12}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}+3x-x-3-x-9.
\frac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-12}{\left(x-3\right)\left(x+3\right)}.
\frac{x+4}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{x-1}{x-3}-\frac{1x+9}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x+9}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{x-1}{x-3} times \frac{x+3}{x+3}.
\frac{\left(x-1\right)\left(x+3\right)-\left(x+9\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+9}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+3x-x-3-x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x-1\right)\left(x+3\right)-\left(x+9\right).
\frac{x^{2}+x-12}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}+3x-x-3-x-9.
\frac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-12}{\left(x-3\right)\left(x+3\right)}.
\frac{x+4}{x+3}
Cancel out x-3 in both numerator and denominator.