Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-1\right)\left(x-1\right)-\left(2-x\right)x=3x-1
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,1-x,x^{2}-3x+2.
\left(x-1\right)^{2}-\left(2-x\right)x=3x-1
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-2x+1-\left(2-x\right)x=3x-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1-\left(2x-x^{2}\right)=3x-1
Use the distributive property to multiply 2-x by x.
x^{2}-2x+1-2x+x^{2}=3x-1
To find the opposite of 2x-x^{2}, find the opposite of each term.
x^{2}-4x+1+x^{2}=3x-1
Combine -2x and -2x to get -4x.
2x^{2}-4x+1=3x-1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x+1-3x=-1
Subtract 3x from both sides.
2x^{2}-7x+1=-1
Combine -4x and -3x to get -7x.
2x^{2}-7x+1+1=0
Add 1 to both sides.
2x^{2}-7x+2=0
Add 1 and 1 to get 2.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 2}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 2}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49-16}}{2\times 2}
Multiply -8 times 2.
x=\frac{-\left(-7\right)±\sqrt{33}}{2\times 2}
Add 49 to -16.
x=\frac{7±\sqrt{33}}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{33}+7}{4}
Now solve the equation x=\frac{7±\sqrt{33}}{4} when ± is plus. Add 7 to \sqrt{33}.
x=\frac{7-\sqrt{33}}{4}
Now solve the equation x=\frac{7±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from 7.
x=\frac{\sqrt{33}+7}{4} x=\frac{7-\sqrt{33}}{4}
The equation is now solved.
\left(x-1\right)\left(x-1\right)-\left(2-x\right)x=3x-1
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,1-x,x^{2}-3x+2.
\left(x-1\right)^{2}-\left(2-x\right)x=3x-1
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}-2x+1-\left(2-x\right)x=3x-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1-\left(2x-x^{2}\right)=3x-1
Use the distributive property to multiply 2-x by x.
x^{2}-2x+1-2x+x^{2}=3x-1
To find the opposite of 2x-x^{2}, find the opposite of each term.
x^{2}-4x+1+x^{2}=3x-1
Combine -2x and -2x to get -4x.
2x^{2}-4x+1=3x-1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x+1-3x=-1
Subtract 3x from both sides.
2x^{2}-7x+1=-1
Combine -4x and -3x to get -7x.
2x^{2}-7x=-1-1
Subtract 1 from both sides.
2x^{2}-7x=-2
Subtract 1 from -1 to get -2.
\frac{2x^{2}-7x}{2}=-\frac{2}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=-\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x=-1
Divide -2 by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-1+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-1+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{33}{16}
Add -1 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{33}}{4} x-\frac{7}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}+7}{4} x=\frac{7-\sqrt{33}}{4}
Add \frac{7}{4} to both sides of the equation.