Evaluate
\frac{12}{\left(x^{2}-4\right)\left(x^{2}-1\right)}
Expand
\frac{12}{\left(x^{2}-4\right)\left(x^{2}-1\right)}
Graph
Share
Copied to clipboard
\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+1 is \left(x-2\right)\left(x+1\right). Multiply \frac{x-1}{x-2} times \frac{x+1}{x+1}. Multiply \frac{x+3}{x+1} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x+1\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Since \frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x-1+x^{2}-2x+3x-6}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Do the multiplications in \left(x-1\right)\left(x+1\right)+\left(x+3\right)\left(x-2\right).
\frac{2x^{2}+x-7}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Combine like terms in x^{2}+x-x-1+x^{2}-2x+3x-6.
\frac{\left(2x^{2}+x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+1\right) and x+2 is \left(x-2\right)\left(x+1\right)\left(x+2\right). Multiply \frac{2x^{2}+x-7}{\left(x-2\right)\left(x+1\right)} times \frac{x+2}{x+2}. Multiply \frac{x+3}{x+2} times \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{\left(2x^{2}+x-7\right)\left(x+2\right)-\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Since \frac{\left(2x^{2}+x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+4x^{2}+x^{2}+2x-7x-14-x^{3}+x^{2}+2x-3x^{2}+3x+6}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Do the multiplications in \left(2x^{2}+x-7\right)\left(x+2\right)-\left(x+3\right)\left(x-2\right)\left(x+1\right).
\frac{x^{3}+3x^{2}-8}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Combine like terms in 2x^{3}+4x^{2}+x^{2}+2x-7x-14-x^{3}+x^{2}+2x-3x^{2}+3x+6.
\frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+1\right)\left(x+2\right) and x-1 is \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{x^{3}+3x^{2}-8}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{x+1}{x-1} times \frac{\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}-x^{3}+3x^{3}-3x^{2}-8x+8-x^{4}-x^{3}+4x^{2}+4x-x^{3}-x^{2}+4x+4}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(x^{3}+3x^{2}-8\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right).
\frac{12}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in x^{4}-x^{3}+3x^{3}-3x^{2}-8x+8-x^{4}-x^{3}+4x^{2}+4x-x^{3}-x^{2}+4x+4.
\frac{12}{x^{4}-5x^{2}+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+1 is \left(x-2\right)\left(x+1\right). Multiply \frac{x-1}{x-2} times \frac{x+1}{x+1}. Multiply \frac{x+3}{x+1} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x+1\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Since \frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-x-1+x^{2}-2x+3x-6}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Do the multiplications in \left(x-1\right)\left(x+1\right)+\left(x+3\right)\left(x-2\right).
\frac{2x^{2}+x-7}{\left(x-2\right)\left(x+1\right)}-\frac{x+3}{x+2}-\frac{x+1}{x-1}
Combine like terms in x^{2}+x-x-1+x^{2}-2x+3x-6.
\frac{\left(2x^{2}+x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+1\right) and x+2 is \left(x-2\right)\left(x+1\right)\left(x+2\right). Multiply \frac{2x^{2}+x-7}{\left(x-2\right)\left(x+1\right)} times \frac{x+2}{x+2}. Multiply \frac{x+3}{x+2} times \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{\left(2x^{2}+x-7\right)\left(x+2\right)-\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Since \frac{\left(2x^{2}+x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x+3\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}+4x^{2}+x^{2}+2x-7x-14-x^{3}+x^{2}+2x-3x^{2}+3x+6}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Do the multiplications in \left(2x^{2}+x-7\right)\left(x+2\right)-\left(x+3\right)\left(x-2\right)\left(x+1\right).
\frac{x^{3}+3x^{2}-8}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}-\frac{x+1}{x-1}
Combine like terms in 2x^{3}+4x^{2}+x^{2}+2x-7x-14-x^{3}+x^{2}+2x-3x^{2}+3x+6.
\frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+1\right)\left(x+2\right) and x-1 is \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{x^{3}+3x^{2}-8}{\left(x-2\right)\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{x+1}{x-1} times \frac{\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(x+2\right)}.
\frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{\left(x^{3}+3x^{2}-8\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}-x^{3}+3x^{3}-3x^{2}-8x+8-x^{4}-x^{3}+4x^{2}+4x-x^{3}-x^{2}+4x+4}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in \left(x^{3}+3x^{2}-8\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)\left(x+1\right)\left(x+2\right).
\frac{12}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in x^{4}-x^{3}+3x^{3}-3x^{2}-8x+8-x^{4}-x^{3}+4x^{2}+4x-x^{3}-x^{2}+4x+4.
\frac{12}{x^{4}-5x^{2}+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}