Solve for x
x = -\frac{32}{9} = -3\frac{5}{9} \approx -3.555555556
Graph
Share
Copied to clipboard
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times 8x\times 8x=8\left(-5\right)\times 8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of x,8.
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8x and 8x to get \left(8x\right)^{2}.
8\left(x-1\right)\times 8x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Anything divided by one gives itself.
64\left(x-1\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8 and 8 to get 64.
\left(64x-64\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64 by x-1.
64x^{2}-64x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64x-64 by x.
64x^{2}-64x+\frac{1}{8}\times 8^{2}x^{2}=8\left(-5\right)\times 8x
Expand \left(8x\right)^{2}.
64x^{2}-64x+\frac{1}{8}\times 64x^{2}=8\left(-5\right)\times 8x
Calculate 8 to the power of 2 and get 64.
64x^{2}-64x+\frac{64}{8}x^{2}=8\left(-5\right)\times 8x
Multiply \frac{1}{8} and 64 to get \frac{64}{8}.
64x^{2}-64x+8x^{2}=8\left(-5\right)\times 8x
Divide 64 by 8 to get 8.
72x^{2}-64x=8\left(-5\right)\times 8x
Combine 64x^{2} and 8x^{2} to get 72x^{2}.
72x^{2}-64x=-40\times 8x
Multiply 8 and -5 to get -40.
72x^{2}-64x=-320x
Multiply -40 and 8 to get -320.
72x^{2}-64x+320x=0
Add 320x to both sides.
72x^{2}+256x=0
Combine -64x and 320x to get 256x.
x\left(72x+256\right)=0
Factor out x.
x=0 x=-\frac{32}{9}
To find equation solutions, solve x=0 and 72x+256=0.
x=-\frac{32}{9}
Variable x cannot be equal to 0.
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times 8x\times 8x=8\left(-5\right)\times 8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of x,8.
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8x and 8x to get \left(8x\right)^{2}.
8\left(x-1\right)\times 8x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Anything divided by one gives itself.
64\left(x-1\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8 and 8 to get 64.
\left(64x-64\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64 by x-1.
64x^{2}-64x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64x-64 by x.
64x^{2}-64x+\frac{1}{8}\times 8^{2}x^{2}=8\left(-5\right)\times 8x
Expand \left(8x\right)^{2}.
64x^{2}-64x+\frac{1}{8}\times 64x^{2}=8\left(-5\right)\times 8x
Calculate 8 to the power of 2 and get 64.
64x^{2}-64x+\frac{64}{8}x^{2}=8\left(-5\right)\times 8x
Multiply \frac{1}{8} and 64 to get \frac{64}{8}.
64x^{2}-64x+8x^{2}=8\left(-5\right)\times 8x
Divide 64 by 8 to get 8.
72x^{2}-64x=8\left(-5\right)\times 8x
Combine 64x^{2} and 8x^{2} to get 72x^{2}.
72x^{2}-64x=-40\times 8x
Multiply 8 and -5 to get -40.
72x^{2}-64x=-320x
Multiply -40 and 8 to get -320.
72x^{2}-64x+320x=0
Add 320x to both sides.
72x^{2}+256x=0
Combine -64x and 320x to get 256x.
x=\frac{-256±\sqrt{256^{2}}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, 256 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-256±256}{2\times 72}
Take the square root of 256^{2}.
x=\frac{-256±256}{144}
Multiply 2 times 72.
x=\frac{0}{144}
Now solve the equation x=\frac{-256±256}{144} when ± is plus. Add -256 to 256.
x=0
Divide 0 by 144.
x=-\frac{512}{144}
Now solve the equation x=\frac{-256±256}{144} when ± is minus. Subtract 256 from -256.
x=-\frac{32}{9}
Reduce the fraction \frac{-512}{144} to lowest terms by extracting and canceling out 16.
x=0 x=-\frac{32}{9}
The equation is now solved.
x=-\frac{32}{9}
Variable x cannot be equal to 0.
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times 8x\times 8x=8\left(-5\right)\times 8x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x, the least common multiple of x,8.
8\left(x-1\right)\times \frac{8x}{1}+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8x and 8x to get \left(8x\right)^{2}.
8\left(x-1\right)\times 8x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Anything divided by one gives itself.
64\left(x-1\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Multiply 8 and 8 to get 64.
\left(64x-64\right)x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64 by x-1.
64x^{2}-64x+\frac{1}{8}\times \left(8x\right)^{2}=8\left(-5\right)\times 8x
Use the distributive property to multiply 64x-64 by x.
64x^{2}-64x+\frac{1}{8}\times 8^{2}x^{2}=8\left(-5\right)\times 8x
Expand \left(8x\right)^{2}.
64x^{2}-64x+\frac{1}{8}\times 64x^{2}=8\left(-5\right)\times 8x
Calculate 8 to the power of 2 and get 64.
64x^{2}-64x+\frac{64}{8}x^{2}=8\left(-5\right)\times 8x
Multiply \frac{1}{8} and 64 to get \frac{64}{8}.
64x^{2}-64x+8x^{2}=8\left(-5\right)\times 8x
Divide 64 by 8 to get 8.
72x^{2}-64x=8\left(-5\right)\times 8x
Combine 64x^{2} and 8x^{2} to get 72x^{2}.
72x^{2}-64x=-40\times 8x
Multiply 8 and -5 to get -40.
72x^{2}-64x=-320x
Multiply -40 and 8 to get -320.
72x^{2}-64x+320x=0
Add 320x to both sides.
72x^{2}+256x=0
Combine -64x and 320x to get 256x.
\frac{72x^{2}+256x}{72}=\frac{0}{72}
Divide both sides by 72.
x^{2}+\frac{256}{72}x=\frac{0}{72}
Dividing by 72 undoes the multiplication by 72.
x^{2}+\frac{32}{9}x=\frac{0}{72}
Reduce the fraction \frac{256}{72} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{32}{9}x=0
Divide 0 by 72.
x^{2}+\frac{32}{9}x+\left(\frac{16}{9}\right)^{2}=\left(\frac{16}{9}\right)^{2}
Divide \frac{32}{9}, the coefficient of the x term, by 2 to get \frac{16}{9}. Then add the square of \frac{16}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{32}{9}x+\frac{256}{81}=\frac{256}{81}
Square \frac{16}{9} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{16}{9}\right)^{2}=\frac{256}{81}
Factor x^{2}+\frac{32}{9}x+\frac{256}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{16}{9}\right)^{2}}=\sqrt{\frac{256}{81}}
Take the square root of both sides of the equation.
x+\frac{16}{9}=\frac{16}{9} x+\frac{16}{9}=-\frac{16}{9}
Simplify.
x=0 x=-\frac{32}{9}
Subtract \frac{16}{9} from both sides of the equation.
x=-\frac{32}{9}
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}