Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{x^{2}-4}-\frac{9}{x^{2}-4x+4}
Calculate 3 to the power of 2 and get 9.
\frac{x-1}{\left(x-2\right)\left(x+2\right)}-\frac{9}{\left(x-2\right)^{2}}
Factor x^{2}-4. Factor x^{2}-4x+4.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}-\frac{9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)^{2} is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{x-1}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{9}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}.
\frac{\left(x-1\right)\left(x-2\right)-9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
Since \frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-x+2-9x-18}{\left(x+2\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x-1\right)\left(x-2\right)-9\left(x+2\right).
\frac{x^{2}-12x-16}{\left(x+2\right)\left(x-2\right)^{2}}
Combine like terms in x^{2}-2x-x+2-9x-18.
\frac{x^{2}-12x-16}{x^{3}-2x^{2}-4x+8}
Expand \left(x+2\right)\left(x-2\right)^{2}.
\frac{x-1}{x^{2}-4}-\frac{9}{x^{2}-4x+4}
Calculate 3 to the power of 2 and get 9.
\frac{x-1}{\left(x-2\right)\left(x+2\right)}-\frac{9}{\left(x-2\right)^{2}}
Factor x^{2}-4. Factor x^{2}-4x+4.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}-\frac{9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)^{2} is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{x-1}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{9}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}.
\frac{\left(x-1\right)\left(x-2\right)-9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}}
Since \frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{9\left(x+2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-x+2-9x-18}{\left(x+2\right)\left(x-2\right)^{2}}
Do the multiplications in \left(x-1\right)\left(x-2\right)-9\left(x+2\right).
\frac{x^{2}-12x-16}{\left(x+2\right)\left(x-2\right)^{2}}
Combine like terms in x^{2}-2x-x+2-9x-18.
\frac{x^{2}-12x-16}{x^{3}-2x^{2}-4x+8}
Expand \left(x+2\right)\left(x-2\right)^{2}.