Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x-1\right)+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right), the least common multiple of x^{2}-1,x^{2}+1,x^{4}+1,x^{8}-1,x-1.
\left(x^{6}+x^{2}+x^{4}+1\right)\left(x-1\right)+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{2}+1 by x^{4}+1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{6}+x^{2}+x^{4}+1 by x-1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+\left(x^{6}-x^{4}+x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{4}+1 by x^{2}-1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+2x^{6}-2x^{4}+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{6}-x^{4}+x^{2}-1 by 2.
x^{7}+x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1-2x^{4}+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{6} and 2x^{6} to get x^{6}.
x^{7}+x^{6}+x^{3}-x^{2}+x^{5}-3x^{4}+x-1+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{4} and -2x^{4} to get -3x^{4}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-1-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{2} and 2x^{2} to get x^{2}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-3+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Subtract 2 from -1 to get -3.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-3+4x^{4}-4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{4}-1 by 4.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x-3-4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -3x^{4} and 4x^{4} to get x^{4}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x-7+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Subtract 4 from -3 to get -7.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Add -7 and 8 to get 1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=\left(x^{3}+x+x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x+1 by x^{2}+1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=x^{7}+x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Use the distributive property to multiply x^{3}+x+x^{2}+1 by x^{4}+1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1-x^{7}=x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Subtract x^{7} from both sides.
x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Combine x^{7} and -x^{7} to get 0.
x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1-x^{3}=x^{5}+x+x^{6}+x^{2}+x^{4}+1
Subtract x^{3} from both sides.
x^{6}+x^{2}+x^{5}+x^{4}+x+1=x^{5}+x+x^{6}+x^{2}+x^{4}+1
Combine x^{3} and -x^{3} to get 0.
x^{6}+x^{2}+x^{5}+x^{4}+x+1-x^{5}=x+x^{6}+x^{2}+x^{4}+1
Subtract x^{5} from both sides.
x^{6}+x^{2}+x^{4}+x+1=x+x^{6}+x^{2}+x^{4}+1
Combine x^{5} and -x^{5} to get 0.
x^{6}+x^{2}+x^{4}+x+1-x=x^{6}+x^{2}+x^{4}+1
Subtract x from both sides.
x^{6}+x^{2}+x^{4}+1=x^{6}+x^{2}+x^{4}+1
Combine x and -x to get 0.
x^{6}+x^{2}+x^{4}+1-x^{6}=x^{2}+x^{4}+1
Subtract x^{6} from both sides.
x^{2}+x^{4}+1=x^{2}+x^{4}+1
Combine x^{6} and -x^{6} to get 0.
x^{2}+x^{4}+1-x^{2}=x^{4}+1
Subtract x^{2} from both sides.
x^{4}+1=x^{4}+1
Combine x^{2} and -x^{2} to get 0.
x^{4}+1-x^{4}=1
Subtract x^{4} from both sides.
1=1
Combine x^{4} and -x^{4} to get 0.
\text{true}
Compare 1 and 1.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -1,1
Variable x cannot be equal to any of the values -1,1.