Solve for x
x\in \mathrm{R}\setminus 1,-1
Solve for x (complex solution)
x\in \mathrm{C}\setminus \sqrt{2}\left(-\frac{1}{2}-\frac{1}{2}i\right),\sqrt{2}\left(\frac{1}{2}+\frac{1}{2}i\right),\sqrt{2}\left(-\frac{1}{2}+\frac{1}{2}i\right),\sqrt{2}\left(\frac{1}{2}-\frac{1}{2}i\right),-1,-i,i,1
Graph
Share
Copied to clipboard
\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x-1\right)+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right), the least common multiple of x^{2}-1,x^{2}+1,x^{4}+1,x^{8}-1,x-1.
\left(x^{6}+x^{2}+x^{4}+1\right)\left(x-1\right)+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{2}+1 by x^{4}+1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+\left(x^{4}+1\right)\left(x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{6}+x^{2}+x^{4}+1 by x-1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+\left(x^{6}-x^{4}+x^{2}-1\right)\times 2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{4}+1 by x^{2}-1.
x^{7}-x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1+2x^{6}-2x^{4}+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{6}-x^{4}+x^{2}-1 by 2.
x^{7}+x^{6}+x^{3}-x^{2}+x^{5}-x^{4}+x-1-2x^{4}+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{6} and 2x^{6} to get x^{6}.
x^{7}+x^{6}+x^{3}-x^{2}+x^{5}-3x^{4}+x-1+2x^{2}-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{4} and -2x^{4} to get -3x^{4}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-1-2+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -x^{2} and 2x^{2} to get x^{2}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-3+\left(x^{4}-1\right)\times 4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Subtract 2 from -1 to get -3.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}-3x^{4}+x-3+4x^{4}-4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x^{4}-1 by 4.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x-3-4+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Combine -3x^{4} and 4x^{4} to get x^{4}.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x-7+8=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Subtract 4 from -3 to get -7.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
Add -7 and 8 to get 1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=\left(x^{3}+x+x^{2}+1\right)\left(x^{4}+1\right)
Use the distributive property to multiply x+1 by x^{2}+1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=x^{7}+x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Use the distributive property to multiply x^{3}+x+x^{2}+1 by x^{4}+1.
x^{7}+x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1-x^{7}=x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Subtract x^{7} from both sides.
x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1=x^{3}+x^{5}+x+x^{6}+x^{2}+x^{4}+1
Combine x^{7} and -x^{7} to get 0.
x^{6}+x^{3}+x^{2}+x^{5}+x^{4}+x+1-x^{3}=x^{5}+x+x^{6}+x^{2}+x^{4}+1
Subtract x^{3} from both sides.
x^{6}+x^{2}+x^{5}+x^{4}+x+1=x^{5}+x+x^{6}+x^{2}+x^{4}+1
Combine x^{3} and -x^{3} to get 0.
x^{6}+x^{2}+x^{5}+x^{4}+x+1-x^{5}=x+x^{6}+x^{2}+x^{4}+1
Subtract x^{5} from both sides.
x^{6}+x^{2}+x^{4}+x+1=x+x^{6}+x^{2}+x^{4}+1
Combine x^{5} and -x^{5} to get 0.
x^{6}+x^{2}+x^{4}+x+1-x=x^{6}+x^{2}+x^{4}+1
Subtract x from both sides.
x^{6}+x^{2}+x^{4}+1=x^{6}+x^{2}+x^{4}+1
Combine x and -x to get 0.
x^{6}+x^{2}+x^{4}+1-x^{6}=x^{2}+x^{4}+1
Subtract x^{6} from both sides.
x^{2}+x^{4}+1=x^{2}+x^{4}+1
Combine x^{6} and -x^{6} to get 0.
x^{2}+x^{4}+1-x^{2}=x^{4}+1
Subtract x^{2} from both sides.
x^{4}+1=x^{4}+1
Combine x^{2} and -x^{2} to get 0.
x^{4}+1-x^{4}=1
Subtract x^{4} from both sides.
1=1
Combine x^{4} and -x^{4} to get 0.
\text{true}
Compare 1 and 1.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -1,1
Variable x cannot be equal to any of the values -1,1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}