Solve for x
x = -\frac{13}{11} = -1\frac{2}{11} \approx -1.181818182
Graph
Share
Copied to clipboard
\left(x-2\right)\left(x-1\right)=\left(x+3\right)\left(x+5\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x+3,x-2.
x^{2}-3x+2=\left(x+3\right)\left(x+5\right)
Use the distributive property to multiply x-2 by x-1 and combine like terms.
x^{2}-3x+2=x^{2}+8x+15
Use the distributive property to multiply x+3 by x+5 and combine like terms.
x^{2}-3x+2-x^{2}=8x+15
Subtract x^{2} from both sides.
-3x+2=8x+15
Combine x^{2} and -x^{2} to get 0.
-3x+2-8x=15
Subtract 8x from both sides.
-11x+2=15
Combine -3x and -8x to get -11x.
-11x=15-2
Subtract 2 from both sides.
-11x=13
Subtract 2 from 15 to get 13.
x=\frac{13}{-11}
Divide both sides by -11.
x=-\frac{13}{11}
Fraction \frac{13}{-11} can be rewritten as -\frac{13}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}