Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{x+2}-\frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Factor x^{2}-4.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x-1}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x-2\right)-\left(x^{2}-2x+1\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Since \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-x+2-x^{2}+2x-1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Do the multiplications in \left(x-1\right)\left(x-2\right)-\left(x^{2}-2x+1\right).
\frac{-x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Combine like terms in x^{2}-2x-x+2-x^{2}+2x-1.
\frac{\left(-x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-1 is \left(x-2\right)\left(x-1\right)\left(x+2\right). Multiply \frac{-x+1}{\left(x-2\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(-x+1\right)\left(x-1\right)+\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Since \frac{\left(-x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+x-1+x^{2}+2x-2x-4}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Do the multiplications in \left(-x+1\right)\left(x-1\right)+\left(x-2\right)\left(x+2\right).
\frac{2x-5}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Combine like terms in -x^{2}+x+x-1+x^{2}+2x-2x-4.
\frac{2x-5}{x^{3}-x^{2}-4x+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+2\right).
\frac{x-1}{x+2}-\frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Factor x^{2}-4.
\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{x-1}{x+2} times \frac{x-2}{x-2}.
\frac{\left(x-1\right)\left(x-2\right)-\left(x^{2}-2x+1\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Since \frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{x^{2}-2x+1}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-x+2-x^{2}+2x-1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Do the multiplications in \left(x-1\right)\left(x-2\right)-\left(x^{2}-2x+1\right).
\frac{-x+1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-1}
Combine like terms in x^{2}-2x-x+2-x^{2}+2x-1.
\frac{\left(-x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-1 is \left(x-2\right)\left(x-1\right)\left(x+2\right). Multiply \frac{-x+1}{\left(x-2\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(-x+1\right)\left(x-1\right)+\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Since \frac{\left(-x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+x+x-1+x^{2}+2x-2x-4}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Do the multiplications in \left(-x+1\right)\left(x-1\right)+\left(x-2\right)\left(x+2\right).
\frac{2x-5}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Combine like terms in -x^{2}+x+x-1+x^{2}+2x-2x-4.
\frac{2x-5}{x^{3}-x^{2}-4x+4}
Expand \left(x-2\right)\left(x-1\right)\left(x+2\right).