Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Variable x cannot be equal to any of the values -2,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+2\right), the least common multiple of x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Use the distributive property to multiply 3x-2 by x-1 and combine like terms.
3x^{2}-5x+2=10x+20
Use the distributive property to multiply x+2 by 10.
3x^{2}-5x+2-10x=20
Subtract 10x from both sides.
3x^{2}-15x+2=20
Combine -5x and -10x to get -15x.
3x^{2}-15x+2-20=0
Subtract 20 from both sides.
3x^{2}-15x-18=0
Subtract 20 from 2 to get -18.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -15 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
Multiply -12 times -18.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
Add 225 to 216.
x=\frac{-\left(-15\right)±21}{2\times 3}
Take the square root of 441.
x=\frac{15±21}{2\times 3}
The opposite of -15 is 15.
x=\frac{15±21}{6}
Multiply 2 times 3.
x=\frac{36}{6}
Now solve the equation x=\frac{15±21}{6} when ± is plus. Add 15 to 21.
x=6
Divide 36 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{15±21}{6} when ± is minus. Subtract 21 from 15.
x=-1
Divide -6 by 6.
x=6 x=-1
The equation is now solved.
\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
Variable x cannot be equal to any of the values -2,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+2\right), the least common multiple of x+2,3x-2.
3x^{2}-5x+2=\left(x+2\right)\times 10
Use the distributive property to multiply 3x-2 by x-1 and combine like terms.
3x^{2}-5x+2=10x+20
Use the distributive property to multiply x+2 by 10.
3x^{2}-5x+2-10x=20
Subtract 10x from both sides.
3x^{2}-15x+2=20
Combine -5x and -10x to get -15x.
3x^{2}-15x=20-2
Subtract 2 from both sides.
3x^{2}-15x=18
Subtract 2 from 20 to get 18.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-5x=\frac{18}{3}
Divide -15 by 3.
x^{2}-5x=6
Divide 18 by 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Simplify.
x=6 x=-1
Add \frac{5}{2} to both sides of the equation.