Solve for x
x=-2\sqrt{2}-3\approx -5.828427125
Graph
Share
Copied to clipboard
x-1=\left(x+1\right)\sqrt{2}
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
x-1=x\sqrt{2}+\sqrt{2}
Use the distributive property to multiply x+1 by \sqrt{2}.
x-1-x\sqrt{2}=\sqrt{2}
Subtract x\sqrt{2} from both sides.
x-x\sqrt{2}=\sqrt{2}+1
Add 1 to both sides.
\left(1-\sqrt{2}\right)x=\sqrt{2}+1
Combine all terms containing x.
\frac{\left(1-\sqrt{2}\right)x}{1-\sqrt{2}}=\frac{\sqrt{2}+1}{1-\sqrt{2}}
Divide both sides by 1-\sqrt{2}.
x=\frac{\sqrt{2}+1}{1-\sqrt{2}}
Dividing by 1-\sqrt{2} undoes the multiplication by 1-\sqrt{2}.
x=-2\sqrt{2}-3
Divide \sqrt{2}+1 by 1-\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}