Solve for x
x\leq 1
Graph
Share
Copied to clipboard
\frac{1}{72}x-\frac{1}{72}+1\geq x
Divide each term of x-1 by 72 to get \frac{1}{72}x-\frac{1}{72}.
\frac{1}{72}x-\frac{1}{72}+\frac{72}{72}\geq x
Convert 1 to fraction \frac{72}{72}.
\frac{1}{72}x+\frac{-1+72}{72}\geq x
Since -\frac{1}{72} and \frac{72}{72} have the same denominator, add them by adding their numerators.
\frac{1}{72}x+\frac{71}{72}\geq x
Add -1 and 72 to get 71.
\frac{1}{72}x+\frac{71}{72}-x\geq 0
Subtract x from both sides.
-\frac{71}{72}x+\frac{71}{72}\geq 0
Combine \frac{1}{72}x and -x to get -\frac{71}{72}x.
-\frac{71}{72}x\geq -\frac{71}{72}
Subtract \frac{71}{72} from both sides. Anything subtracted from zero gives its negation.
x\leq -\frac{71}{72}\left(-\frac{72}{71}\right)
Multiply both sides by -\frac{72}{71}, the reciprocal of -\frac{71}{72}. Since -\frac{71}{72} is negative, the inequality direction is changed.
x\leq \frac{-71\left(-72\right)}{72\times 71}
Multiply -\frac{71}{72} times -\frac{72}{71} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{5112}{5112}
Do the multiplications in the fraction \frac{-71\left(-72\right)}{72\times 71}.
x\leq 1
Divide 5112 by 5112 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}