Solve for x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Share
Copied to clipboard
x-1-3\left(x+3\right)=2\left(3x+4\right)
Multiply both sides of the equation by 6, the least common multiple of 6,2,3.
x-1-3x-9=2\left(3x+4\right)
Use the distributive property to multiply -3 by x+3.
-2x-1-9=2\left(3x+4\right)
Combine x and -3x to get -2x.
-2x-10=2\left(3x+4\right)
Subtract 9 from -1 to get -10.
-2x-10=6x+8
Use the distributive property to multiply 2 by 3x+4.
-2x-10-6x=8
Subtract 6x from both sides.
-8x-10=8
Combine -2x and -6x to get -8x.
-8x=8+10
Add 10 to both sides.
-8x=18
Add 8 and 10 to get 18.
x=\frac{18}{-8}
Divide both sides by -8.
x=-\frac{9}{4}
Reduce the fraction \frac{18}{-8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}