Solve for x
x>\frac{27}{2}
Graph
Share
Copied to clipboard
3\left(x-1\right)+30<5x
Multiply both sides of the equation by 15, the least common multiple of 5,3. Since 15 is positive, the inequality direction remains the same.
3x-3+30<5x
Use the distributive property to multiply 3 by x-1.
3x+27<5x
Add -3 and 30 to get 27.
3x+27-5x<0
Subtract 5x from both sides.
-2x+27<0
Combine 3x and -5x to get -2x.
-2x<-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
x>\frac{-27}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x>\frac{27}{2}
Fraction \frac{-27}{-2} can be simplified to \frac{27}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}