Solve for x
x\geq \frac{9}{5}
Graph
Share
Copied to clipboard
3\left(x-1\right)\leq 4\left(2x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 4,3. Since 12 is positive, the inequality direction remains the same.
3x-3\leq 4\left(2x-3\right)
Use the distributive property to multiply 3 by x-1.
3x-3\leq 8x-12
Use the distributive property to multiply 4 by 2x-3.
3x-3-8x\leq -12
Subtract 8x from both sides.
-5x-3\leq -12
Combine 3x and -8x to get -5x.
-5x\leq -12+3
Add 3 to both sides.
-5x\leq -9
Add -12 and 3 to get -9.
x\geq \frac{-9}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x\geq \frac{9}{5}
Fraction \frac{-9}{-5} can be simplified to \frac{9}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}