Solve for x
x=\frac{\sqrt{357}}{6}-\frac{5}{2}\approx 0.649073938
x=-\frac{\sqrt{357}}{6}-\frac{5}{2}\approx -5.649073938
Graph
Share
Copied to clipboard
x-1=\left(3x-2\right)x+\left(3x-2\right)\times 6
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-2.
x-1=3x^{2}-2x+\left(3x-2\right)\times 6
Use the distributive property to multiply 3x-2 by x.
x-1=3x^{2}-2x+18x-12
Use the distributive property to multiply 3x-2 by 6.
x-1=3x^{2}+16x-12
Combine -2x and 18x to get 16x.
x-1-3x^{2}=16x-12
Subtract 3x^{2} from both sides.
x-1-3x^{2}-16x=-12
Subtract 16x from both sides.
-15x-1-3x^{2}=-12
Combine x and -16x to get -15x.
-15x-1-3x^{2}+12=0
Add 12 to both sides.
-15x+11-3x^{2}=0
Add -1 and 12 to get 11.
-3x^{2}-15x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-3\right)\times 11}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -15 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-3\right)\times 11}}{2\left(-3\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+12\times 11}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-15\right)±\sqrt{225+132}}{2\left(-3\right)}
Multiply 12 times 11.
x=\frac{-\left(-15\right)±\sqrt{357}}{2\left(-3\right)}
Add 225 to 132.
x=\frac{15±\sqrt{357}}{2\left(-3\right)}
The opposite of -15 is 15.
x=\frac{15±\sqrt{357}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{357}+15}{-6}
Now solve the equation x=\frac{15±\sqrt{357}}{-6} when ± is plus. Add 15 to \sqrt{357}.
x=-\frac{\sqrt{357}}{6}-\frac{5}{2}
Divide 15+\sqrt{357} by -6.
x=\frac{15-\sqrt{357}}{-6}
Now solve the equation x=\frac{15±\sqrt{357}}{-6} when ± is minus. Subtract \sqrt{357} from 15.
x=\frac{\sqrt{357}}{6}-\frac{5}{2}
Divide 15-\sqrt{357} by -6.
x=-\frac{\sqrt{357}}{6}-\frac{5}{2} x=\frac{\sqrt{357}}{6}-\frac{5}{2}
The equation is now solved.
x-1=\left(3x-2\right)x+\left(3x-2\right)\times 6
Variable x cannot be equal to \frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-2.
x-1=3x^{2}-2x+\left(3x-2\right)\times 6
Use the distributive property to multiply 3x-2 by x.
x-1=3x^{2}-2x+18x-12
Use the distributive property to multiply 3x-2 by 6.
x-1=3x^{2}+16x-12
Combine -2x and 18x to get 16x.
x-1-3x^{2}=16x-12
Subtract 3x^{2} from both sides.
x-1-3x^{2}-16x=-12
Subtract 16x from both sides.
-15x-1-3x^{2}=-12
Combine x and -16x to get -15x.
-15x-3x^{2}=-12+1
Add 1 to both sides.
-15x-3x^{2}=-11
Add -12 and 1 to get -11.
-3x^{2}-15x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-15x}{-3}=-\frac{11}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{15}{-3}\right)x=-\frac{11}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+5x=-\frac{11}{-3}
Divide -15 by -3.
x^{2}+5x=\frac{11}{3}
Divide -11 by -3.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{11}{3}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{11}{3}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{119}{12}
Add \frac{11}{3} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{119}{12}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{119}{12}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{357}}{6} x+\frac{5}{2}=-\frac{\sqrt{357}}{6}
Simplify.
x=\frac{\sqrt{357}}{6}-\frac{5}{2} x=-\frac{\sqrt{357}}{6}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}