Solve for x
x = -\frac{19}{5} = -3\frac{4}{5} = -3.8
Graph
Share
Copied to clipboard
4\left(x-1\right)-6\left(x+2\right)=12x-3\left(3x-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 3x,2x,4x.
4x-4-6\left(x+2\right)=12x-3\left(3x-1\right)
Use the distributive property to multiply 4 by x-1.
4x-4-6x-12=12x-3\left(3x-1\right)
Use the distributive property to multiply -6 by x+2.
-2x-4-12=12x-3\left(3x-1\right)
Combine 4x and -6x to get -2x.
-2x-16=12x-3\left(3x-1\right)
Subtract 12 from -4 to get -16.
-2x-16=12x-9x+3
Use the distributive property to multiply -3 by 3x-1.
-2x-16=3x+3
Combine 12x and -9x to get 3x.
-2x-16-3x=3
Subtract 3x from both sides.
-5x-16=3
Combine -2x and -3x to get -5x.
-5x=3+16
Add 16 to both sides.
-5x=19
Add 3 and 16 to get 19.
x=\frac{19}{-5}
Divide both sides by -5.
x=-\frac{19}{5}
Fraction \frac{19}{-5} can be rewritten as -\frac{19}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}