Solve for x
x\leq \frac{15}{16}
Graph
Share
Copied to clipboard
4\left(x-1\right)-\left(2x-1\right)-6\left(3x-1\right)+12\geq 0
Multiply both sides of the equation by 12, the least common multiple of 3,12,2. Since 12 is positive, the inequality direction remains the same.
4x-4-\left(2x-1\right)-6\left(3x-1\right)+12\geq 0
Use the distributive property to multiply 4 by x-1.
4x-4-2x-\left(-1\right)-6\left(3x-1\right)+12\geq 0
To find the opposite of 2x-1, find the opposite of each term.
4x-4-2x+1-6\left(3x-1\right)+12\geq 0
The opposite of -1 is 1.
2x-4+1-6\left(3x-1\right)+12\geq 0
Combine 4x and -2x to get 2x.
2x-3-6\left(3x-1\right)+12\geq 0
Add -4 and 1 to get -3.
2x-3-18x+6+12\geq 0
Use the distributive property to multiply -6 by 3x-1.
-16x-3+6+12\geq 0
Combine 2x and -18x to get -16x.
-16x+3+12\geq 0
Add -3 and 6 to get 3.
-16x+15\geq 0
Add 3 and 12 to get 15.
-16x\geq -15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-15}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x\leq \frac{15}{16}
Fraction \frac{-15}{-16} can be simplified to \frac{15}{16} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}