Solve for x
x>\frac{29}{2}
Graph
Share
Copied to clipboard
2\left(x-1\right)+3>30
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
2x-2+3>30
Use the distributive property to multiply 2 by x-1.
2x+1>30
Add -2 and 3 to get 1.
2x>30-1
Subtract 1 from both sides.
2x>29
Subtract 1 from 30 to get 29.
x>\frac{29}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}