Solve for x
x=\frac{35}{36}\approx 0.972222222
Graph
Share
Copied to clipboard
\frac{x-1}{12\times 5}-\frac{5-2x}{2\times 4\times 5}=-\frac{3x+4}{3\times 5\times 6}
Multiply 3 and 4 to get 12.
\frac{x-1}{60}-\frac{5-2x}{2\times 4\times 5}=-\frac{3x+4}{3\times 5\times 6}
Multiply 12 and 5 to get 60.
\frac{x-1}{60}-\frac{5-2x}{8\times 5}=-\frac{3x+4}{3\times 5\times 6}
Multiply 2 and 4 to get 8.
\frac{x-1}{60}-\frac{5-2x}{40}=-\frac{3x+4}{3\times 5\times 6}
Multiply 8 and 5 to get 40.
\frac{2\left(x-1\right)}{120}-\frac{3\left(5-2x\right)}{120}=-\frac{3x+4}{3\times 5\times 6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 60 and 40 is 120. Multiply \frac{x-1}{60} times \frac{2}{2}. Multiply \frac{5-2x}{40} times \frac{3}{3}.
\frac{2\left(x-1\right)-3\left(5-2x\right)}{120}=-\frac{3x+4}{3\times 5\times 6}
Since \frac{2\left(x-1\right)}{120} and \frac{3\left(5-2x\right)}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-2-15+6x}{120}=-\frac{3x+4}{3\times 5\times 6}
Do the multiplications in 2\left(x-1\right)-3\left(5-2x\right).
\frac{8x-17}{120}=-\frac{3x+4}{3\times 5\times 6}
Combine like terms in 2x-2-15+6x.
\frac{8x-17}{120}=-\frac{3x+4}{15\times 6}
Multiply 3 and 5 to get 15.
\frac{8x-17}{120}=-\frac{3x+4}{90}
Multiply 15 and 6 to get 90.
\frac{1}{15}x-\frac{17}{120}=-\frac{3x+4}{90}
Divide each term of 8x-17 by 120 to get \frac{1}{15}x-\frac{17}{120}.
\frac{1}{15}x-\frac{17}{120}=-\left(\frac{1}{30}x+\frac{2}{45}\right)
Divide each term of 3x+4 by 90 to get \frac{1}{30}x+\frac{2}{45}.
\frac{1}{15}x-\frac{17}{120}=-\frac{1}{30}x-\frac{2}{45}
To find the opposite of \frac{1}{30}x+\frac{2}{45}, find the opposite of each term.
\frac{1}{15}x-\frac{17}{120}+\frac{1}{30}x=-\frac{2}{45}
Add \frac{1}{30}x to both sides.
\frac{1}{10}x-\frac{17}{120}=-\frac{2}{45}
Combine \frac{1}{15}x and \frac{1}{30}x to get \frac{1}{10}x.
\frac{1}{10}x=-\frac{2}{45}+\frac{17}{120}
Add \frac{17}{120} to both sides.
\frac{1}{10}x=-\frac{16}{360}+\frac{51}{360}
Least common multiple of 45 and 120 is 360. Convert -\frac{2}{45} and \frac{17}{120} to fractions with denominator 360.
\frac{1}{10}x=\frac{-16+51}{360}
Since -\frac{16}{360} and \frac{51}{360} have the same denominator, add them by adding their numerators.
\frac{1}{10}x=\frac{35}{360}
Add -16 and 51 to get 35.
\frac{1}{10}x=\frac{7}{72}
Reduce the fraction \frac{35}{360} to lowest terms by extracting and canceling out 5.
x=\frac{7}{72}\times 10
Multiply both sides by 10, the reciprocal of \frac{1}{10}.
x=\frac{7\times 10}{72}
Express \frac{7}{72}\times 10 as a single fraction.
x=\frac{70}{72}
Multiply 7 and 10 to get 70.
x=\frac{35}{36}
Reduce the fraction \frac{70}{72} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}