Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)\left(x-1\right)-2xx=2^{2}x-2x^{2}
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x-3\right), the least common multiple of 2x,x-3,2x^{2}-6x.
x^{2}-4x+3-2xx=2^{2}x-2x^{2}
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{2}-4x+3-2x^{2}=2^{2}x-2x^{2}
Multiply x and x to get x^{2}.
x^{2}-4x+3-2x^{2}=4x-2x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-4x+3-2x^{2}-4x=-2x^{2}
Subtract 4x from both sides.
x^{2}-8x+3-2x^{2}=-2x^{2}
Combine -4x and -4x to get -8x.
x^{2}-8x+3-2x^{2}+2x^{2}=0
Add 2x^{2} to both sides.
3x^{2}-8x+3-2x^{2}=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
x^{2}-8x+3=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 3}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-8\right)±\sqrt{52}}{2}
Add 64 to -12.
x=\frac{-\left(-8\right)±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{8±2\sqrt{13}}{2}
The opposite of -8 is 8.
x=\frac{2\sqrt{13}+8}{2}
Now solve the equation x=\frac{8±2\sqrt{13}}{2} when ± is plus. Add 8 to 2\sqrt{13}.
x=\sqrt{13}+4
Divide 8+2\sqrt{13} by 2.
x=\frac{8-2\sqrt{13}}{2}
Now solve the equation x=\frac{8±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from 8.
x=4-\sqrt{13}
Divide 8-2\sqrt{13} by 2.
x=\sqrt{13}+4 x=4-\sqrt{13}
The equation is now solved.
\left(x-3\right)\left(x-1\right)-2xx=2^{2}x-2x^{2}
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x-3\right), the least common multiple of 2x,x-3,2x^{2}-6x.
x^{2}-4x+3-2xx=2^{2}x-2x^{2}
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{2}-4x+3-2x^{2}=2^{2}x-2x^{2}
Multiply x and x to get x^{2}.
x^{2}-4x+3-2x^{2}=4x-2x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-4x+3-2x^{2}-4x=-2x^{2}
Subtract 4x from both sides.
x^{2}-8x+3-2x^{2}=-2x^{2}
Combine -4x and -4x to get -8x.
x^{2}-8x+3-2x^{2}+2x^{2}=0
Add 2x^{2} to both sides.
3x^{2}-8x+3-2x^{2}=0
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-8x-2x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}-8x=-3
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-8x+\left(-4\right)^{2}=-3+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-3+16
Square -4.
x^{2}-8x+16=13
Add -3 to 16.
\left(x-4\right)^{2}=13
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-4=\sqrt{13} x-4=-\sqrt{13}
Simplify.
x=\sqrt{13}+4 x=4-\sqrt{13}
Add 4 to both sides of the equation.