Solve for x
x = \frac{8}{7} = 1\frac{1}{7} \approx 1.142857143
Graph
Share
Copied to clipboard
3x\left(x-1\right)+6x^{2}\left(-\frac{1}{2}\right)=2\left(2x-4\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x^{2}, the least common multiple of 2x,2,3x^{2}.
3x^{2}-3x+6x^{2}\left(-\frac{1}{2}\right)=2\left(2x-4\right)
Use the distributive property to multiply 3x by x-1.
3x^{2}-3x-3x^{2}=2\left(2x-4\right)
Multiply 6 and -\frac{1}{2} to get -3.
-3x=2\left(2x-4\right)
Combine 3x^{2} and -3x^{2} to get 0.
-3x=4x-8
Use the distributive property to multiply 2 by 2x-4.
-3x-4x=-8
Subtract 4x from both sides.
-7x=-8
Combine -3x and -4x to get -7x.
x=\frac{-8}{-7}
Divide both sides by -7.
x=\frac{8}{7}
Fraction \frac{-8}{-7} can be simplified to \frac{8}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}